Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹11

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.11.21  

17th International Conference

Gas Discharge Plasmas and Their Applications

Ekaterinburg, Russia, 8-12 September 2025

 

 

 

Features of the formation

of a high-voltage nanosecond discharge

in a “point-to-point” gap

filled with atmospheric-pressure air

 

D.V. Beloplotov 1, B. Zaitsev 2, D.A. Sorokin 1,2

 

1 Institute of High Current Electronics SB RAS, 634055, Russia, Tomsk, 2/3 Akademichesky Ave.

2 National Research Tomsk State University, 634050, Russia, Tomsk, 36 Lenina Ave.

 

The paper was received October 2, 2025.

 

 

Abstract. Using high-speed scientific equipment, studies of high-voltage nanosecond discharge in a gap with two pointed electrodes filled with atmospheric-pressure air were carried out. The physical processes occurring during the discharge formation and combustion were studied using optical imaging and oscillography techniques. A stage-by-stage description of the phenomenon evolution obtained with high spatio-temporal resolution is presented. The fact of a collision of streamers propagating towards each other, occurring at a distance of ~ 2/3 of the interelectrode distance and accompanied by an increase in the intensity of the plasma glow and the electric field strength at the meeting point, has been experimentally recorded.

Keywords: high-voltage nanosecond discharge, “point-to-point” gap, streamer, diffuse discharge, spark, nonuniform electric field, atmospheric pressure air.

Funding: The studies were performed in the framework of the State Task for IHCE SB RAS, project # FWRM-2021-0014.

Corresponding author: Dmitry Alekseevich Sorokin, SDmA-70@loi.hcei.tsc.ru

 

 

References

1. Babich L.P. High-Energy Phenomena in Electric Discharges in Dense Gases. Futurepast. 2003. – 358 p.

2. Bourdon A., Bonaventura Z., Celestin S. Influence of the pre-ionization background and simulation of the optical emission of a streamer discharge in preheated air at atmospheric pressure between two point electrodes // Plasma Sources Science and Technology. – 2010. – V. 19. – ¹ 3. – P. 034012. https://doi.org/10.1088/0963-0252/19/3/034012

3. Chen S. et al. Nanosecond repetitively pulsed discharges in N2–O2 mixtures: inception cloud and streamer emergence // Journal of Physics D: Applied Physics. – 2015. – V. 48. – ¹ 17. – P. 175201. https://doi.org/10.1088/0022-3727/48/17/175201

4. Tarasenko V.F. (ed.) Runaway Electrons Preionized Diffuse Discharges. Nova Science Publishers, Inc. 2016.


 

5. Tardiveau P. et al. Sub-nanosecond time resolved light emission study for diffuse discharges in air under steep high voltage pulses // Plasma Sources Science and Technology. – 2016. – V. 25. – ¹ 5. – P. 054005. https://doi.org/10.1088/0963-0252/25/5/054005

6. Aleksandrov N.L. et al. High-voltage pico-and nanosecond discharge development in gaseous and liquid media // Zhurnal Prikladnoi Spektroskopii (Journal of Applied Spectroscopy). – 2016. – V. 83. – ¹ 6-16. – P. 658–659.

7. Babaeva N.Y. et al. Development of nanosecond discharges in atmospheric pressure air: two competing mechanisms of precursor electrons production // Journal of Physics D: Applied Physics. – 2018. – V. 51. – ¹ 43. – P. 434002. https://doi.org/10.1088/1361-6463/aada74

8. Sorokin D.A. et al. Features of streamer formation in a sharply non-uniform electric field // Journal of Applied Physics. – 2019. – V. 125. – P. 143301. https://doi.org/10.1063/1.5067294

9. Bourdon A. et al. Study of the electric field in a diffuse nanosecond positive ionization wave generated in a pin-to-plane geometry in atmospheric pressure air // Journal of Physics D: Applied Physics. – 2020. – V. 54. – ¹ 7. – P. 075204. https://doi.org/10.1088/1361-6463/abbc3a

10. Trenkin A.A. et al. Dynamics of Structure of Pulsed Discharge in Nitrogen and Argon at Different Pressures in a “Pin to Plane” Gap // Technical Physics. – 2024. – V. 69. – ¹ 2. – P. 431-436. https://doi.org/10.21883/jtf.2022.09.52925.58-22

11. Huiskamp T. Nanosecond pulsed streamer discharges: Part I: Generation, source-plasma interaction and energy-efficiency optimization // Plasma Sources Science and Technology. – 2020. – V. 29. – ¹ 2. – P. 023002.

12. Wang D., Namihira T. Nanosecond pulsed streamer discharges: Part II. Physics, discharge characterization and plasma processing // Plasma Sources Science and Technology. – 2020. – v. 29. – ¹ 2. – P. 023001. https://doi.org/10.1088/1361-6595/ab5bf6

13. Luo Y. et al. Numerical simulation of surface charge accumulation under negative discharge of different humidities and pressures // Physics of Plasmas. – 2025.  – V. 32. – ¹ 2. – P. 023901. https://doi.org/10.1063/5.0241349

14. Tarasenko V. et al. Properties of diffuse and volume discharges that are important for their applications // High Voltage. – 2025. – V. 10. – ¹ 1. – P. 126-136. https://doi.org/10.1049/hve2.12507

15. Baksht E. Kh. et al. Point-like pulse-periodic UV radiation source with a short pulse duration // Quantum Electronics. – 2012. – V. 42. – ¹ 2. – P. 153– 156. https://doi.org/10.1070/QE2012v042n02ABEH014795

16. Cha M.S., Snoeckx R. Plasma technology–Preparing for the electrified future // Frontiers in Mechanical Engineering. – 2022. – V. 8. – P. 903379. https://doi.org/10.3389/fmech.2022.903379

17. Adamovich I. et al. The 2022 Plasma Roadmap: low temperature plasma science and technology // Journal of Physics D: Applied Physics. – 2022. – V. 55. – ¹ 37. – P. 373001.

18. Pawelek D.B. et al. Design of a nanosecond high voltage surface discharge switch // 2007 IEEE 34th International Conference on Plasma Science (ICOPS). – IEEE, 2007. – P. 348–348. https://doi.org/10.1109/PPPS.2007.4345654

19. Chaparro J.E. et al. Breakdown delay times for subnanosecond gas discharges at pressures below one atmosphere // IEEE Transactions on Plasma Science. – 2008. – V. 36. – ¹ 5. – P. 2505–2510. https://doi.org/10.1109/TPS.2008.2004365

20. Beloplotov D., Sorokin D., Tarasenko V. High-voltage nanosecond discharge as a means of fast energy switching // Energies. – 2021. – V. 14. – ¹ 24. – P. 8449. https://doi.org/10.3390/en14248449

21. Becker K.H., Kogelschatz U., Schoenbach K.H., Barker R.J. (eds.). Non-equilibrium air plasmas at atmospheric pressure. CRC press, 2004. – 700 p. https://doi.org/10.1201/9781482269123

22. Starikovskiy A. Pulsed nanosecond discharge development in liquids with various dielectric permittivity constants // Plasma sources science and Technology. – 2013. – V. 22. – ¹ 1. – P. 012001. https://doi.org/10.1088/0963-0252/22/1/012001

23. Prukner V. et al. Demonstration of dynamics of nanosecond discharge in liquid water using four-channel time-resolved ICCD microscopy. Plasma. – 2021. – V. 4. – P. 183–200. https://doi.org/10.3390/plasma4010011

24. Hoder T. et al. Barrier discharges in CO2–optical emission spectra analysis and E/N determination from intensity ratio // Plasma Sources Science and Technology.  – 2025. – V. 34. – ¹ 5. – P. 055008. https://doi.org/10.1088/1361-6595/adc7d7

25. Lu X. et al. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects // Physics Reports. – 2016. – V. 630.  – P. 1-84. https://doi.org/10.1016/j.physrep.2016.03.003

26. Komuro A. A review of streamer discharge-induced plasma chemistry at atmospheric pressure: Key mechanisms and future perspectives // Journal of Electrostatics. – 2025. – P. 104087. https://doi.org/10.1016/j.elstat.2025.104087

27. Weltmann K.-D. et al. The future for plasma science and technology // Plasma Processes and Polymers. – 2019.– V. 16. – ¹ 1. – P. 1800118. https://doi.org/10.1002/ppap.201800118

28. Šimek M., Homola T. Plasma-assisted agriculture: history, presence, and prospects–a review // The European Physical Journal D. – 2021. – V. 75. – P. 1–31. https://doi.org/10.1140/epjd/s10053-021-00206-4

29. S. Duarte, Panariello B.H.D. Comprehensive biomedical applications of low temperature plasmas // Archives of Biochemistry and Biophysics. – 2020. – V. 693. – P. 108560. https://doi.org/10.1016/j.abb.2020.108560

30. Minesi N.Q. et al. Plasma-assisted combustion with nanosecond discharges.  I: Discharge effects characterization in the burnt gases of a lean flame // Plasma Sources Science and Technology. – 2022. – V. 31. – ¹ 4. – P. 045029. https://doi.org/10.1088/1361-6595/ac5cd4

31. Mouele E.S.M. et al. A critical review on ozone and co-species, generation and reaction mechanisms in plasma induced by dielectric barrier discharge technologies for wastewater remediation // Journal of Environmental Chemical Engineering. – 2021. – V. 9. – ¹. 5. – P. 105758

32. Parkevich E.V. et al. Streamer formation processes trigger intense x-ray and high-frequency radio emissions in a high-voltage discharge // Physical Review E. – 2022. – V. 105. – ¹ 5. – P. L053201. https://doi.org/10.1103/PhysRevE.105.L053201

33. Sorokin D.A., Beloplotov D.V. Development of Nanosecond Discharge in an Inhomogeneous Electric Field in Water Medium // Bulletin of the Russian Academy of Sciences: Physics. – 2024. – V. 88. – ¹ 4. – P. 656-663. https://doi.org/10.1134/S1062873823706268

34. Efanov V.M., et al. Ultra-Wideband, Short Pulse Electromagnetics 9. Springer, 2010. – p. 301. https://doi.org/10.1007/978-0-387-77845-7_35

35. Paris P. et al. Intensity ratio of spectral bands of nitrogen as a measure of electric field strength in plasmas // Journal of Physics D: Applied Physics. – 2005. – V. 38. – ¹ 21. – P. 3894–3899. https://doi.org/10.1088/0022-3727/38/21/010

36. Hoder T. et al. Radially and temporally resolved electric field of positive streamers in air and modelling of the induced plasma chemistry // Plasma Sources Science and Technology. – 2016. – V. 25. – ¹ 4. – P. 045021. https://doi.org/10.1088/0963-0252/25/4/045021

37. Beloplotov D.V. et al. Measurement of the dynamic displacement current as a new method of study of the dynamics of formation of a streamer at a breakdown of gases at a high pressure // JETP Letters. – 2018. – V. 107. – P. 606-611. https://doi.org/10.1134/S0021364018100065

38. Popov N.A. Fast gas heating in a nitrogen–oxygen discharge plasma: I. Kinetic mechanism // Journal of Physics D: Applied Physics. – 2011. – V. 44. – ¹ 28.  – P. 285201. https://doi.org/10.1088/0022-3727/44/28/285201

39. Dumitrache C. et al. Hydrodynamic regimes induced by nanosecond pulsed discharges in air: mechanism of vorticity generation // Journal of Physics D: Applied Physics. – 2019. – V. 52. – ¹ 36. – P. 364001. https://doi.org/10.1088/1361-6463/ab28f9


 

40. Tholin F., Bourdon A. Simulation of the hydrodynamic expansion following a nanosecond pulsed spark discharge in air at atmospheric pressure // Journal of Physics D: Applied Physics. – 2013. – V. 46. – ¹ 36. – P. 365205. https://doi.org/10.1088/0022-3727/46/36/365205

41. Roger E. et al. Origin of the recirculation flow pattern induced by nanosecond discharges and criterion for its development // Journal of Physics D: Applied Physics. – 2025. – V. 58. – ¹ 14. – P. 145203. https://doi.org/10.1088/1361-6463/adb1f0

 

For citation:

Beloplotov D.V., Zaitsev B., Sorokin D.A. Features of the formation of a high-voltage nanosecond discharge in a “point-to-point” gap filled with atmospheric pressure air // Journal of Radio Electronics. – 2025. – ¹ 11. https://doi.org/10.30898/1684-1719.2025.11.21