Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹11
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.11.29
BASED ON GRAPHENE AND ANTIFERROMAGNETS
A.L. Alferyev 1, A.V. Gorbatova 1, E.A. Bulavintseva 1, A.I. Kartsev 1,
A.A. Klimov 1, A.M. Buryakov 1, N.S. Gusev 2, M.V. Sapozhnikov 1,2
1 MIREA-Russian Technological University, 119454, Russia, Moscow, Vernadsky Avenue 78
2 Institute for Physics of Microstructures RAS,
603087, Russia, Nizhny Novgorod region, Kstovsky district, Afonino, Academicheskaya Str. 7
The paper was received October 3, 2025.
Abstract. We investigate terahertz (THz) emission mechanisms in spintronic emitters – Co (3 nm), graphene (Gr)/Co (3 nm), and Co (3 nm)/FeMn (5 nm) – grown on quartz substrates. Magnetic properties were characterized in the longitudinal magneto-optical Kerr effect (MOKE) geometry, and the emission dynamics by time-domain THz spectroscopy (THz-TDS). In Gr/Co, the graphene interface induces perpendicular magnetic anisotropy; the phase of the THz waveforms is invariant with respect to the pumping side at a fixed field polarity, indicating demagnetization-driven emission. Under back-side pumping the amplitude increases by ≈1.5×, whereas front-side excitation reduces it by about a factor of two, consistent with differences in optical/THz absorption and interference. In Co/FeMn, the antiferromagnetic layer imposes pronounced in-plane uniaxial anisotropy and increases coercivity; a phase inversion upon switching the pumping side indicates a dominant inverse spin Hall effect. No exchange bias is observed at the selected thicknesses and without post-annealing. Additionally, an asymmetry of the THz hysteresis loops in Co/FeMn reveals even-in-magnetization contributions to the emission. These results underscore the central role of interface engineering in Co/AFM and Gr/Co stacks for controlling spin-to-charge conversion and optimizing THz-emitter performance.
Key words: spintronic THz emitter, ultrafast demagnetization, inverse spin Hall effect, graphene, FeMn, perpendicular magnetic anisotropy, MOKE, THz spectroscopy
Financing: The study of the parameters of THz spintronic generators was supported by the Russian Science Foundation (Project No. 24-79-10302). The development and fabrication of spintronic structures using magnetron sputtering was supported by the Ministry of Science and Higher Education of the Russian Federation (Project No. FSFZ-2025-0002). The creation and primary characterization of samples was carried out using equipment from the Center for Collective Use “Physics and Technology of Micro- and Nanostructures” (IPM RAS).
Corresponding author: Alferyev Artem Leonidovich, alferev@mirea.ru
References
1. Heimel G., Brédas J.-L. Reflections on charge transport // Nature Nanotechnology. – 2013. – Vol. 8. – No. 4. – P. 230–231. https://doi.org/10.1038/nnano.2013.42
2. Horiuchi N. On-chip dual-comb source // Nature Photonics. – 2016. – Vol. 10. – No. 6. – P. 359. https://doi.org/10.1038/nphoton.2016.115
3. Papaioannou E.Th., Beigang R. THz spintronic emitters: a review on achievements and future challenges // Nanophotonics. – 2021. – Vol. 10. – No. 4. – P. 1243–1257. https://doi.org/10.1515/nanoph-2020-0563
4. Khusyainov D., Ovcharenko S., Gaponov M. et al. Polarization control of THz emission using spin-reorientation transition in spintronic heterostructure // Scientific Reports. – 2021. – Vol. 11. – No. 1. – P. 910. https://doi.org/10.1038/s41598-020-80781-5
5. Kampfrath T., Kirilyuk A., Mangin S. et al. Ultrafast and terahertz spintronics: Guest editorial // Applied Physics Letters. – 2023. – Vol. 123. – No. 5. – P. 050001. https://doi.org/10.1063/5.0167151
6. Khusyainov D., Ovcharenko S., Buryakov A. et al. Composite Multiferroic Terahertz Emitter: Polarization Control via an Electric Field // Physical Review Applied. – 2022. – Vol. 17. – No. 4. – P. 044025. https://doi.org/10.1103/PhysRevApplied.17.044025
7. Buryakov A.M., Mishina E.D., Lebedeva E.D. et al. Spin valve as THz emitter providing amplitude modulation // APL Materials. – 2024. – Vol. 12. – No. 10. – P. 101109. https://doi.org/10.1063/5.0221982
8. Bull C., Hewett S.M., Ji R. et al. Spintronic terahertz emitters: Status and prospects from a materials perspective // APL Materials. – 2021. – Vol. 9. – No. 9. – P. 091114. https://doi.org/10.1063/5.0057511
9. Novoselov K.S., Geim A.K., Morozov S.V. et al. Electric Field Effect in Atomically Thin Carbon Films // Science. – 2004. – Vol. 306. – No. 5696. – P. 666–669. https://doi.org/10.1126/science.1102896
10. Alferyev A.L., Kartsev A.I., Shesterikov E.V. et al. Two-dimensional materials for spintronic terahertz emitters // Fine Chemical Technologies. – 2025. – Vol. 13. – No. 4. – P. 47–54. https://doi.org/10.32362/2500-316X-2025-13-4-47-54
11. Eginligil M., Cao B., Wang Z. et al. Dichroic spin–valley photocurrent in monolayer molybdenum disulphide // Nature Communications. – 2015. – Vol. 6. – No. 1. – P. 7636. https://doi.org/10.1038/ncomms8636
12. Mak K.F., He K., Shan J. et al. Control of valley polarization in monolayer MoS2 by optical helicity // Nature Nanotechnology. – 2012. – Vol. 7. – No. 8. – P. 494–498. https://doi.org/10.1038/nnano.2012.96
13. Estevez-Torres A., Rondelez Y. Spatially localized DNA domino // Nature Nanotechnology. – 2017. – Vol. 12. – No. 9. – P. 842–843. https://doi.org/10.1038/nnano.2017.157
14. Panda S.N., Majumder S., Choudhury S. et al. Femtosecond laser-induced spin dynamics in single-layer graphene/CoFeB thin films // Nanoscale. – 2021. – Vol. 13. – No. 32. – P. 13709–13718. https://doi.org/10.1039/d1nr03397b
15. Idzuchi H., Iihama S., Shimura M. et al. Spin injection characteristics of Py/graphene/Pt by gigahertz and terahertz magnetization dynamics driven by femtosecond laser pulse // AIP Advances. – 2021. – Vol. 11. – No. 1. – P. 015014. https://doi.org/10.1063/9.0000114
16. Cheng L., Wang X., Yang W. et al. Far out-of-equilibrium spin populations trigger giant spin injection into atomically thin MoS2 // Nature Physics. – 2019. – Vol. 15. – No. 4. – P. 347–351. https://doi.org/10.1038/s41567-018-0406-3
17. Buryakov A.M., Gorbatova A.V., Avdeev P.Y. et al. Hybrid Co/2D-WSe2-based THz spintronic emitter with tunable polarization // Applied Physics Letters. – 2025. – Vol. 127. – No. 5. – P. 052402. https://doi.org/10.1063/5.0274793
18. Khusyainov D., Guskov A., Ovcharenko S. et al. Increasing the Efficiency of a Spintronic THz Emitter Based on WSe2/FeCo // Materials. – 2021. – Vol. 14. – No. 21. – P. 6479. https://doi.org/10.3390/ma14216479
19. Schmidt U., Dieing T., Ibach W. et al. A Confocal Raman-AFM Study of Graphene // Microscopy Today. – 2011. – Vol. 19. – No. 6. – P. 30–33. https://doi.org/10.1017/S1551929511001192
20. Shi Y., Dong X., Chen P. et al. Effective doping of single-layer graphene from underlying SiO2 substrates // Physical Review B. – 2009. – Vol. 79. – No. 11. – P. 115402. https://doi.org/10.1103/PhysRevB.79.115402
21. Berger A.J., Amamou W., White S.P. et al. Magnetization dynamics of cobalt grown on graphene // Journal of Applied Physics. – 2014. – Vol. 115. – No. 17. – P. 17C511. https://doi.org/10.1063/1.4864742
22. Yang H., Vu A.D., Hallal A. et al. Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt–Graphene Heterostructures // Nano Letters. – 2016. – Vol. 16. – No. 1. – P. 145–151. https://doi.org/10.1021/acs.nanolett.5b03392
23. Feshchenko A.A., Ezubchenko I.S., Chernov A.I. et al. Effect of thickness and tungsten doping of antiferromagnetic Cr–Mn layers on the microstructure and hysteresis properties of Cr–Mn/FM (FM = Fe, Fe20Ni80, Fe10Co90, Fe60Co20B20) type films // Physics of the Solid State. – 2025. – Vol. 67. – No. 6. – P. 1101–1111. https://doi.org/10.61011/FTT.2025.06.60962.19HH-25
24. Beaurepaire E., Turner G.M., Harrel S.M. et al. Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses // Applied Physics Letters. – 2004. – Vol. 84. – No. 18. – P. 3465–3467. https://doi.org/10.1063/1.1737467
25. Buryakov A.M., Gorbatova A.V., Avdeev P.Yu. et al. Spintronic emitter of terahertz radiation based on two-dimensional semiconductor tungsten diselenide // Technical Physics Letters. – 2022. – Vol. 48. – No. 9. – P. 19–22. https://doi.org/10.21883/PJTF.2022.18.53393.19246
26. Konschuh S., Gmitra M., Fabian J. Tight-binding theory of the spin-orbit coupling in graphene // Physical Review B. – 2010. – Vol. 82. – No. 24. – P. 245412. https://doi.org/10.1103/PhysRevB.82.245412
27. Šipr O., Minár J., Mankovsky S. et al. Influence of composition, many-body effects, spin-orbit coupling, and disorder on magnetism of Co-Pt solid-state systems // Physical Review B. – 2008. – Vol. 78. – No. 14. – P. 144403. https://doi.org/10.1103/PhysRevB.78.144403
28. Tahir M., Sahin H., Meng S. Enhancement of spin current to charge current conversion in Ferromagnet/Graphene interface // arXiv preprint arXiv:2404.16595. – 2024. https://doi.org/10.48550/arXiv.2404.16595
29. Cunha R.O., Garcia-Basabe Y., Larrude D.G. et al. Unraveling the Spin-to-Charge Current Conversion Mechanism and Charge Transfer Dynamics at the Interface of Graphene/WS2 Heterostructures at Room Temperature // ACS Applied Materials & Interfaces. – 2024. – Vol. 16. – No. 36. – P. 48107–48117. https://doi.org/10.1021/acsami.4c08539
30. Abdukayumov K., Mičica M., Ibrahim F. et al. Atomic-Layer Controlled Transition from Inverse Rashba–Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe2 Probed by THz Spintronic Emission // Advanced Materials. – 2024. – Vol. 36. – No. 14. – P. 2304243. https://doi.org/10.1002/adma.202304243
31. Avdeev P.Yu., Gorbatova A.V., Lebedeva E.D. et al. Competing mechanisms of polarization-controlled terahertz emission in Co/Mo spintronic bilayers // Journal of Physics D: Applied Physics. – 2025. – Vol. 58. – No. 38. – P. 385003. https://doi.org/10.1088/1361-6463/ae0345
32. Yao Z., Fu H., Du W. et al. Magnetization-induced optical rectification and inverse spin Hall effect for interfacial terahertz generation in metallic heterostructures // Physical Review B. – 2021. – Vol. 103. – No. 20. – P. L201404. https://doi.org/10.1103/PhysRevB.103.L201404
33. Jiang Y., Li Z., Li Z. et al. Ultrafast light-driven magneto-optical nonlinearity in ferromagnetic heterostructures // Optics Letters. – 2023. – Vol. 48. – No. 8. – P. 2054–2057. https://doi.org/10.1364/OL.485966
For citation:
Alferyev A.L., Gorbatova A.V., Bulavintseva E.A., Kartsev A.I., Klimov A.A., Buryakov A.M., Gusev N.S., Sapozhnikov M.V. Spintronic THz emitters based on graphene and antiferromagnets // Journal of Radio Electronics. – 2025. – ¹. 11. https://doi.org/10.30898/1684-1719.2025.11.29 (In Russian)