"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 10, 2017

contents             full textpdf   



S. E. Bankov

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Mokhovaya11-7, Moscow125009, Russia


The paper is received on October 20, 2017


Abstract. 2D single-focus arrays of elementary radiators with frequency scanning focused in the Fresnel zone are considered. A problem of the array synthesis is solved for the arrays of different types. The proposed solution determines coordinates of the elementary radiators located in the planar aperture. An approximate analysis of the electromagnetic field radiated by the array of the radiators assuming specified currents is presented. The currents are formed by a system of parallel transmission lines loaded with the elementary radiators. Traces of focal spots movement in two dominant scanning planes - in parallel and perpendicular to the transmission lines axes - are investigated. Scanning curves determined for the field strength maximum and for the radiation efficiency maximum are obtained. 

Key words: focused array, frequency scanning, Fresnel zone, scanning curve, radiation efficiency.


1.     David M. Sheen, Justin L. Fernandes, Jonathan R. Tedeschi, Douglas L. McMakin, A. Mark Jones,Wayne M. Lechelt, and Ronald H. Severtsen, Wide-bandwidth, wide-beamwidth, high-resolution, millimeter-wave imaging for concealed weapon detection, Proc. of SPIE, Vol. 8715, 871509-1.

2.     D.A. Robertson, S.L. Cassidy, B. Jones, A. Clark, in Passive and Active Millimeter-Wave Imaging XVII, Proc. of SPIE, vol. 9078, ed. by D.A. Wikner, A.R. Luukanen (2014), Proc. of SPIE, Vol. 9078, p. 907805. doi:10.1117/12. 2053023.

3.   S.S. Ahmed, A. Schiessl, L.-P. Schmidt, et‎ al., A novel fully electronic active real-time imager based on a planar multistatic sparse array, IEEE‎ Transactions‎ on‎ Microwave‎ Theory‎ and‎ Techniques,‎ 2011, Vol. 59,‎ p. 3567-3576.

4.      N. J. Bowring, M. J. Southgate, D. A. Andrews, et‎ al., Development of a longer range standoff millimeter wave radar concealed threat detector. Proc. of SPIE, Vol. 8714, 87140C.

5.     E. Heinz, T. May, D. Born, G.l. Zieger, et‎ al., Toward high-sensitivity and high-resolution submillimeter-wave video imaging Opt. Eng., 50(11), November 02, 2011.

6.   E. N. Grossman, J. Gordon, D. Novotny, R. Chamberlin, Terahertz active and passive imaging, 2014 8th European Conference on Antennas and Propagation (EuCAP), DOI: 10.1109/EuCAP.2014.6902253.

7.   N.E. Alexander, B. Alderman, F. Allona, et‎ al, TeraSCREEN: multi-frequency multi-mode Terahertz screening for border checks. Proc. of SPIE, Vol. 9078 907802-1.

8.     E. Gandini,  N. Llombart,  A. Neto,  T. Bryllert,  E.Gandini,  N.Llombart,  Near-field imaging system fed by lens antenna focal plane array at sub-millimeter frequency. Proc. of  IEEE Europ. Conf. on Antennas and Propagation, Apr.6-11, Hague, Netherland, 2014.

9.      Sheen, D.M., McMakin D.L., and Hall T.E., Combined illumination cylindrical millimeter-wave imaging technique for concealed weapon detection. Proc. of SPIE, 2000. 4032: p. 52-60.

10.  Sheen, D.M., D.L. McMakin, and T.E. Hall, Cylindrical millimeter-wave imaging technique for concealed weapon detection. Proceedings of SPIE, 1997. 3240: p. 242-250.

11.  E. Schreiber, M. Peichl, M. Jirousek, H. Suess. VESAS: a novel concept for fully-electronic passive MW imaging. Proceedings of SPIE Defense, Security, and Sensing. 2013, 8715 (87150J). SPIE Digital Library. SPIE Defense, Security, and Sensing 2013, Apr 29 –May 3, 2013, Baltimore, USA.

12.  I. Ohtera, Focusing properties of a microwave radiator utilizing a slotted rectangular waveguide. IEEE Trans. on Antennas  and  Propagation, 1990, Vol. 38, No. 1, p. 121-124.

13. I. Ohtera, Diverging/focusing of electromagnetic waves by utilizing the curved leakywave structure: Application to broad-beam antenna for radiating within specified wide-angle. IEEE Trans. on Antennas  and  Propagation, 1999, Vol. 47, No 9, p.1470-1475.

14.  J. L. Gómez-Tornero, F. Quesada-Pereira,  A. Alvarez-Melcón, et al., Frequency steerable two dimensional focusing using rectilinear leaky-wave lenses, IEEE Trans. on Antennas  and  Propagation, Vol. 59, No. 2, 2011, p. 407-415.

15.  A. J. Martínez-Ros,  J. L. Gómez-Tornero,  F. J. Clemente-Fernández, J. Monzó-Cabrera, Microwave near-field focusing properties of width-tapered microstrip leaky-wave antenna. IEEE Trans. on Antennas  and  Propagation, Vol. 61, No. 6, 2013, p. 2981-2990.

16.  T. Okuyama, Y. Monnai, H. Shinoda, 20-GHz focusing antennas based on corrugated waveguide scattering. IEEE Antennas and Wireless Propagation Letters, Vol. 12, 2013, p. 1284-1286.

17.  S. Clauzier, S. Avrillon, L. Le Coq, M. Himdi, F. Colombel, E. Rochefort, Slotted waveguide antenna with a near-field focused beam in one plane. Microwaves, Antennas & Propagation, IET,  2014, Volume: 9,  Issue: 7, p. 634- 639, https://hal.archives-ouvertes.fr/hal-01114680/document.

18.  M. L. Chen , S. Gupta,  Z. L. Ma, L. J. Jiang, Linearly Polarized Near Field Focused Slot-Array Waveguide, Antennas and Propagation Society International Symposium (APSURSI), IEEE, 6-11 July , 2014,  p. 1047–1048, Memphis, USA.

19.   J. L. Gómez-Tornero,  A. J. Martinez-Ros ,  N. D.Blanco,  E. Rajo-Iglesias,  Near-field focusing with holographic two-dimensional tapered leaky-wave slot antennas. Proc. of the 6th European Conf. on Antennas and Propagation (EUCAP), 2012, p. 234-238.

20.  D. Blanco, J.L. Gómez-Tornero, E. Rajo-Iglesias, N. Llombart, Radially polarized annular-slot leaky-wave antenna for three-dimensional near-field microwave focusing. IEEE Antennas and Wireless Propagating Letters, Vol. 13, 2014, p. 583-586.

21.   M. Ettorre, M. Casaletti, G.Valerio, R. Sauleau, L. Le Coq, S. C. Pavone, M. Albani, On the near-field shaping and focusing capability of a radial line slot array. IEEE Trans. on Antennas  and  Propagation, Vol. 62, No. 4, April 2014, p. 1991-1999.

22.  S. E. Bankov, V. A. Kaloshin, and E. V. Frolova, Synthesis and Analysis of a Frequency_Scanned Planar Waveguide Array Focused in the Fresnel Zone. Journal of Communications Technology and Electronics, 2016, Vol. 61, No. 6, pp. 587–597.

23.   S. E. Bankov and E. V. Frolova, Synthesis and Analysis of a Planar Waveguide Array with Two-Dimensional Frequency Scanning Focused in the Fresnel Zone. Journal of Communications Technology and Electronics, 2017, Vol. 62, No. 9, pp. 927–940.

24.  Ň.A. Milligan, Modern antenna design.  USA, New Jersey, JOHN WILEY & SONS, INC., 2005.

25.   Rotman W. and Turner R.F. Wide-Angle Microwave Lens for Line Source Applications.  IEEE Transactions on AP. 1963. Vol. 11. No. 11. P. 623-632.


For citation:

S. E. Bankov. 2D single–focus frequency scanning arrays focused in the Fesnel zone. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 10. Available at http://jre.cplire.ru/jre/oct17/13/text.pdf.