"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 10, 2017

contents             full textpdf   

Radiofrequency Tags Based on Surface Acoustic Waves in 2.4‑2.483 GHz Frequency Band for Anti-collision Identification System


S. G. Suchkov 1, S. A. Nikitov 1,2, S. S. Yankin 1, A. A. Pilovets 1, S. V. Komkov 1, I. A. Shatrova 1, V. A. Nikolaevtsev 1

1 Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia

2 Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Mokhovaya 11-7, Moscow 125009, Russia


The paper is received on October 16, 2017


Abstract. This article is dedicated to the problem of anti-collision protection of system of radio frequency identification (RFID) of objects. Such system is based on RFID tags on surface acoustic waves (SAW) and operating in the microwave band. Method of discrete-time coding is realized in this system.

The optimal design of the RFID tags for such system is found in this paper. Calculation of the topology of the metalized structure was carried out by the finite element method. The finite thickness of the electrodes, the SAW energy scattering into the volume and the difference in the material constants between the film structures and the bulk material were taken into account. The geometric parameters of the interdigital transducer fingers and the reflective structure pins and the sizes of the code position are given.

The simulation results and experimental responses of the RFID tag and its transceiver antenna are presented. Frequency S11 and time-domain S(t) responses of anti-collision RFID tags are shown. The frequency response S11 of the antenna and its impedance are shown in the form of Smith chart.

The responses of the anti-collision RFID system based on SAW tags with discrete-time coding in the ISM frequency band (2.4 ‑ 2.483 GHz) were studied theoretically and experimentally. The time-domain simultaneous response S(t) of the seven anti-collision RFID tags is presented.

The possibility of creation of an anti-collision RFID system based on SAW tags which allows us to identify simultaneously up to 100 closely located objects is shown. Such possibility occurs if one uses the discrete-time coding with a single-pulse interrogation mode. The maximal distance of identification of the objects in such system is 20 m.

Key words: radiofrequency identification, surface acoustic wave, collision problem, electron lithography, discrete-time encoding.


1.     Turcu C. Development and Implementation of RFID Technology. Vienna: I-Tech, 2009. DOI: 10.5772/6515.

2.     Morgan D. Surface Acoustic Wave Filters. L.: Academic Press, 2007.

3.     Cazeca M.J., Mead J., Chen J., Nagarajan R. Passive wireless displacement sensor based on RFID technology. Sensors and Actuators A: Physical. 2013. Vol. 190. . 197. DOI: 10.1016/j.sna.2012.11.007

4.     Volk T., Gorbey S., Grünwald W., Bhattacharyya M., Reindl L., Lemmer B., Jansen D. Semi-passive powered biotelemetry for small animals. Sensors and Actuators A: Physical. 2015. Vol. 221. . 95. DOI: 10.1016/j.sna.2014.10.021

5.     Salmerón J.F., Rivadeneyra A., Agudo-Acemel M., Capitán-Vallvey L.F., Banqueri J., Carvajal M.A., Palma A.J. Printed single-chip UHF passive radio frequency identification tags with sensing capability. Sensors and Actuators A: Physical. 2014. V. 220. . 281. DOI: 10.1016/j.sna.2014.10.023

6.     Finkenzeller K. RFID Handbook. New York: John Wiley and Sons, 2003. DOI: 10.1002/0470868023

7.     Plessky V., Reindl L. Review on SAW RFID tags. IEEE Trans. 2010. V. UFFC-57 . 3. . 654. DOI: 10.1109/TUFFC.2010.1462

8.     Scholl G., Schmidt F., Ostertag T., Reindl L., Scherr H., Wolff U. Wireless passive SAW sensor systems for industrial and domestic applications. Proc. 1998 IEEE Frequency Control Symp., Los Angeles, USA 27-29 May 1998. N.Y.: IEEE, 1998. P. 595. DOI: 10.1109/FREQ.1998.717961

9.     Harma S., Arthur W., Hartmann C., Maev R.G., Plessky V.P. Inline SAW RFID tag using time position and phase encoding. IEEE Trans., 2008.V. UFFC-55, . 8. . 1840. DOI: 10.1109/TUFFC.2008.867

10.  Dmitriev V.F., Koigerov A.S. Study of surface acoustic wave ID tags with specified correlation properties. Journal of Communications Technology and Electronics. 2011. Vol. 56. No. 10. pp. 1256-1265. DOI: 10.1134/S1064226911100081.

11.  Plessky V., Lamothe M., Davis Z., Suchkov S. SAW tags for the 6-GHz range. IEEE Trans. 2014. V. UFFC-61. No. 12. P. 2149. DOI: 10.1109/TUFFC.2014.006423

12.  Suchkov S.G., Yankin S.S., Nikolaevtsev V.A., Suchkov D.S., Shatrova I.A., Ermishin V.V., Nikitov S.A.. Radiofrequency identification system based on surface acoustic waves for novel frequency range 6 GHz. Proc. 2014 International Conference on Actual Problems of Electron Devices Engineering, Saratov, Russian Federation, 25-26 Sept. 2014. Saratov: SSTU. P. 307. DOI: 10.1109/APEDE.2014.6958766

13.  Suchkov S.G., Nikolaevtsev V.A., Suchkov D.S., Ermishin V.V., Rossoshansky A.V. Analysis by Finite Element Method of Integral Antenna of RFID Tag at 5.56.5 GHz. Izvestiia Saratovskogo universiteta. Novaia Seriia. Seriia Fizika. [Bulletin of Saratov University. New series. Series Physics]. 2014. Vol. 14. Iss. 2. pp. 12-18. (In Russian)

14.  Malocha D., Gallagher M., Fisher B., Humphries J, Gallagher D, Kozlovski N. A Passive Wireless Multi-Sensor SAW Technology Device and System Perspectives. Sensors. 2013. Vol. 13, P. 5897. DOI: 10.3390/s130505897

15.  Stelzer A., Pichler M., Scheiblhofer S., Schuster S. Identification of SAW ID-tags using an FSCW interrogation unit and model-based evaluation. IEEE Trans., 2004. Vol. UFFC-51, No. 11. . 1412. DOI: 10.1109/TUFFC.2004.1367480

16.  Reindl L., Scholl G., Ostertag T., Scherr Y., Wolff U., Schmidt F. Theory and application of passive SAW radio transponders as sensors. IEEE Trans. 1998. Vol. UFFC-45. No. 5. P. 1281. DOI: 10.1109/58.726455

17.  Hartmann C., Hartmann P., Brown P., Bellamy J., Claiborne L., Bonner W. Anti-collision methods for global SAW RFID tag systems. Proc. 2004 IEEE Int. Ultrasonics Symp. Montreal 23-27 Aug. 2004. N.Y.: IEEE, 2004. P. 805. DOI: 10.1109/ULTSYM.2004.1417859

18.  Stierlin R., Küng R. Process for carrying out a non-contact remote enquiry. US Patent  6407695, 18.06.02.

19.  Bagdasarian S.A., Bagdasarian A.S., Karapet'ian G.Ia., Nefedova N.A. Radio frequency identification system based on surface acoustic waves. RF Patent No. 2344437. (In Russian)

20.  C. Shannon. A Mathematical Theory of Communication. The Bell System Technical Journal, 1948. V. 27. . 379.DOI: 10.1002/j.1538-7305.1948.tb01338.x

21.  Lehtonen S., Plessky V., Hartmann C., Salomaa M. SPUDT filters for the 2.45 GHz ISM band. IEEE Trans., 2004. Vol. UFFC-51, No. 12. . 1697. DOI: 10.1109/TUFFC.2004.1386687

22.  Suchkov S.G., Nikolaevtsev V.A., Suchkov D.S., Iankin S.S., Ermishin V.V. Passive radiofrequency identification tag based on surface acoustic wave. RF Patent No. 135451 (In Russian)

23.  P. Brown, P. Hartmann, A. Schellhase, A. Powers, T. Brown, C.S. Hartmann, D. Gaines. Asset Tracking on the International Space Station Using Global SAW Tag RFID Technology. Proc. 2007 IEEE Ultrasonics Symp., New York, 28-31 Oct. 2007. P. 72. DOI: 10.1109/ULTSYM.2007.31

24.  Gulyaev Y.V., Nikitov S.A., Suchkov S.G., Yankin S.S., Suchkov D.S., Plessky V.P. SAW radio-frequency identification tag for the 6-GHz band. Journal of Communications Technology and Electronics. 2015. Vol. 60. No. 4. pp. 402-405. DOI: 10.1134/S1064226915040087

25.  Borrero G.A., Bravo J.P., Mora S.F., Velásquez S., Segura-Quijano F.E. Design and fabrication of SAW pressure, temperature and impedance sensors using novel multiphysics simulation models. Sensors and Actuators A: Physical. 2013. Vol. 202, . 204. DOI: 10.1016/j.sna.2013.08.021

26.  Graczykowski B. The reflection of Rayleigh surface waves from single steps and grooves. Journal of Applied Physics. 2012. Vol. 112, No. 10, P. 103520. DOI: 10.1063/1.4766888

27.  Darinskii A.N., Weihnacht M., Schmidt H. Surface acoustic wave scattering from steps, grooves, and strips on piezoelectric substrates. IEEE Trans., 2004. V. UFFC-57, No. 9. . 2042. DOI: 10.1109/TUFFC.2010.1652

28.  Suchkov S.G., Barinov D.A. The anisotropy of thin metal films and its effect on the characteristics of SAW devices. Journal of Communications Technology and Electronics. 2002. Vol. 47. No. 4. pp. 458-460.

29.  Suchkov S.G., Yankin S.S., Nikitov S.A., Shatrova I.A. Scattering of surface acoustic waves by a system of topographical irregularities comparable to a wavelength. Journal of Communications Technology and Electronics. 2014. Vol. 59. No. 4. pp. 373-378. DOI: 10.1134/S1064226914040123

30.  Rosenfield M., Thomson M., Coane P., Kwietniak K., Keller J., Klaus D., Volant R., Blair C., Tremaine K., Newman T., Hohn J. Electron-beam lithography for advanced device prototyping: Process tool metrology. Journal of vacuum science & technology. B. 1993. Vol. 11, No. 6, . 2615. DOI: 10.1116/1.586636

31.  Müller A., Konstantinidis G., Buiculescu V, Dinescu A., Stavrinidis A., Stefanescu A., Stavrinidis G., Giangu I., Cismaru A., ModoveanuA. GaN/Si based single SAW resonator temperature sensor operating in the GHz frequency range. Sensors and Actuators A: Physical. 2014. Vol. 209, . 115. DOI:10.1016/j.sna.2014.01.028

32.  Chen S.-Y., Hsu P. Hybrid Loop Antenna for 2.4-GHz RFID Tags. Proc. 2005 IEEE International symposium on antennas and propagation, Seoul, Korea, 3-5 Aug. 2005. N.Y.: IEEE, 2005. P. 1045.

33.  The sanitary and epidemiological rules and norms. Electromagnetic fields in the working environment (with changes on March 2, 2009). (In Russian)


For citation:

S. G. Suchkov, S. A. Nikitov, S. S. Yankin, A. A. Pilovets, S. V. Komkov, I. A. Shatrova, V. A. Nikolaevtsev. Radiofrequency Tags Based on Surface Acoustic Waves in 2.4‑2.483 GHz Frequency Band for Anti-collision Identification System. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 10. Available at http://jre.cplire.ru/jre/oct17/14/text.pdf. (In Russian)