"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 10, 2017

contents             full textpdf   

SERS effect enhancement by surface wave in photonic crystal

 I. A. Boginskaya 1, R. A. Sirazov 3, I. A. Nechepurenko 1,2, A. V. Dorofeenko 1,2,3, I. V. Bykov 1, K. N. Afanasyev 1,
 M. V. Sedova 1, I. A. Ryzhikov 1, A. P. Vinogradov 1,2,3, A. V. Eremenko 4,5, I. A. Budashov 4,5, I. N. Kurochkin

 1 Institute for Theoretical and Applied Electromagnetics of RAS, Uzhorskaya st. 13, Moscow 125412, Russia
2 Dukhov Research Institute of Automatics, Suschevskaya st. 22, Moscow 127055, Russia

3 Moscow Institute of Physics and Technology, Institutskiy lane 9, Dolgoprudnyi Moscoe region, 141700, Russia

4 Emanuel Institute of Biochemical Physics RAS, Kosygina st. 4, Moscow 119334, Russia

5 M.V. Lomonosov Moscow State University, Chemical Department, Leninskie Gory 1-3, Moscow 119991, Russia


The paper is received on October 11, 2017


Abstract. Surface enhanced Raman scattering (SERS) effect enhancement with a dielectric multilayer structure (1D photonic crystal) is proposed. The photonic crystal is used as a resonant substrate. The enhancement is due to the high field intensity at the PC/vacuum interface, where the SERS-active layer is placed. Numerical calculations show a possibility of 2-3 orders enhancement of SERS signal. We also propose a method of photonic crystal quality characterization with the use of spectroscopic ellipsometry. In the hypothetic lossless case the amplitude reflection coefficient does not reveal the presence of resonance. Only the phase of the reflection coefficient shows a resonant behavior, which is seen in the ellipsometric spectrum. Losses in the real system, which are caused by scattering and absorption, lead to the appearance of dip in the amplitude reflection spectrum. At some value of losses, the dip falls to zero, which is analogous to the same situation in Kretschmann effect. Further growth of losses leads to the decrease in the dip depth. We have shown that transition through the point of zero reflection is accompanied by an abrupt change in the ellipsometric spectrum. Thus, we argue that only the structures, which have losses below the aforementioned value, may be efficient as resonant SERS substrates.

Keywords: Raman scattering, photonic crystal, surface waves, ellipsometry.


1. N. Colthup. Introduction to infrared and Raman spectroscopy. Elsevier, 2012.

2. J. C. Tsang, J. R. Kirtley, J. A. Bradley. Surface-Enhanced Raman Spectroscopy and Surface Plasmons.  Physical Review Letters. 1979. Vol. 43. No. 11. pp. 772-775.

3. G. L. Eesley. Relationship between surface-plasmon radiation and enhanced adsorbate Raman scattering.  Physical Review B.  1981. Vol. 24. No. 10. pp. 5477-5484.

4. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld. Single molecule detection using surface-enhanced Raman scattering (SERS).  Physical Review Letters.  1997. Vol. 78.  No. 9. p. 1667.

5. R. M. Jarvis, R. Goodacre. Characterisation and identification of bacteria using SERS.  Chemical Society Reviews.  2008.  Vol. 37.  No. 5. pp. 931-936.

6. M. D. Porter, R. J. Lipert, L. M. Siperko, G. Wang, R. Narayanan. SERS as a bioassay platform: fundamentals, design, and applications.  Chemical Society Reviews.  2008.  Vol. 37.  No. 5. pp. 1001-1011.

7. R. D. Meade, K. D. Brommer, A. M. Rappe, J. Joannopoulos. Electromagnetic Bloch waves at the surface of a photonic crystal.  Physical Review B. 1991. Vol. 44. No. 19. p. 10961.

8. Aleksei P Vinogradov, Aleksandr V Dorofeenko, Aleksandr M Merzlikin and Aleksandr A Lisyansky. Surface states in photonic crystals. Physics-Uspekhi, 2010. Vol. 53. No. 3. pp. 243-256.
9. V. V. Moskalenko, I. V. Soboleva, A. A. Fedyanin. Surface wave-induced enhancement of the Goos-Hänchen effect in one-dimensional photonic crystals. JETP Letters. 2010. Vol. 91.  No. 8.  pp. 382-386.

10. A. I. Ignatov, A. M. Merzlikin, M. Levy, A. P. Vinogradov. Formation of degenerate band gaps in layered systems. Materials.  2012.  Vol. 5.  No. 6.  pp. 1055-1083.

11. I. A. Nechepurenko, A. V. Dorofeenko, A. P. Vinogradov, I. N. Kurochkin. SERS enhancement by surface wave in photonic crystal. Vestnik Moskovskogo Universiteta. Seriya 2. Khimiya - Proceedings of Moscow State University. Series 2. Chemistry.  2015.  Vol. 56.  No. 3. pp. 142-146. (In Russian)

12. R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos. Electromagnetic Bloch waves at the surface of a photonic crystal.  Physical Review B.  1991.  Vol. 44. No. 19. pp. 10961-10964.

13. S. Pirotta, X. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni. Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves.  The Journal of Physical Chemistry C.  2013. Vol. 117.  No. 13.  pp. 6821-6825.

14. X.-M. Qian, S. Nie. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chemical Society Reviews.  2008.  Vol. 37.  No. 5.  pp. 912-920.

15. F. Villa, L. E. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, T. Lopez-Ríos. Photonic crystal sensor based on surface waves for thin-film characterization.  Optics Letters.  2002.  Vol. 27.  No. 8. pp. 646-648.


For citation:

I.A. Boginskaya, R.A. Sirazov, I.A. Nechepurenko, A.V. Dorofeenko, I.V. Bykov, K.N. Afanasyev, M.V. Sedova, I.A. Ryzhikov, A.P. Vinogradov, A.V. Eremenko, I.A. Budashov, I.N. Kurochkin. SERS effect enhancement by surface wave in photonic crystal. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 10. Available at http://jre.cplire.ru/jre/oct17/8/text.pdf. (In Russian)