∆”–ЌјЋ –јƒ»ќЁЋ≈ “–ќЌ» ». eISSN 1684-1719. 2023. є10
ќглавление выпуска

“екст статьи (pdf)

English page

 

DOI: https://doi.org/10.30898/1684-1719.2023.10.2

”ƒ : 537.86

 

‘ормирование фронта ударной волны

при распространении наносекундных видеоимпульсов

в слабопровод€щих средах с температурной

зависимостью диэлектрической проницаемости

 

ѕ.—. √лазунов 1,2, ј.ћ. —алецкий 1, ¬.ј. ¬довин 2

 

1 ћ√” им. ћ. ¬. Ћомоносова, ‘изический факультет

119991, ћосква, Ћенинские горы, ул.  олмогорова, д. 1, стр. 2

2 »–Ё им. ¬.ј.  отельникова –јЌ, 125009, ћосква, ул. ћохова€, 11, корп. 7

 

—тать€ поступила в редакцию 22 сент€бр€ 2023 г.

 

јннотаци€. ѕредлагаетс€ консервативна€ модель слабопровод€щих материальных сред с температурной зависимостью диэлектрической проницаемости, дл€ которой выполн€ютс€ начала термодинамики. ¬ыведена система уравнений в частных производных, описывающа€ изменение профил€ электромагнитного видеоимпульса, с течением времени. –ассмотрено приближение, в котором данную систему возможно решить при помощи метода характеристик. ѕоказано, что при распространении импульса возникают два конкурирующих нелинейных эффекта: рост пиковой мощности импульса и формирование ударной электромагнитной волны.

 лючевые слова: ударна€ электромагнитна€ волна, температурный коэффициент диэлектрической проницаемости, наносекундный видеоимпульс, метод характеристик.

‘инансирование: √осзадание.

јвтор дл€ переписки: ¬довин ¬ладимир јлександрович, vdv@cplire.ru

 

Ћитература

1. Rukin S.N. Pulsed power technology based on semiconductor opening switches: A review // Review of scientific instruments. Ц 2020. Ц V. 91. Ц є. 1. https://doi.org/10.1063/1.5128297

2. Gundersen M. et al. A review of diverse academic research in nanosecond pulsed power and plasma science // IEEE Transactions on Plasma Science. Ц 2020. Ц V. 48. Ц є. 4. Ц P. 742-748. https://doi.org/10.1109/TPS.2020.2972934

3. Senaj V. et al. JACoW: Sub-Nanosecond Switching of HV SiC MOS Transistors for Impact Ionisation Triggering // JACoW IPAC. Ц 2021. Ц V. 21. Ц P. 4454-4456. https://doi.org/10.18429/JACoW-IPAC2021-THPAB340

4. Sokovnin S.Y., Balezin M.E. Repetitive nanosecond electron accelerators type URT-1 for radiation technology // Radiation Physics and Chemistry. Ц 2018. Ц V. 144. Ц P. 265-270. https://doi.org/10.1016/j.radphyschem.2017.08.023

5. del Barrio Montañés A. et al. Ultra-Fast Generator for Impact Ionization Triggering // JACoW IPAC. Ц 2022. Ц V. 2022. Ц P. 2872-2874. https://doi.org/10.18429/JACoW-IPAC2022-THPOTK044

6. Jintao Q.I.U. et al. Reconstruction of energy spectrum of runaway electrons in nanosecond-pulse discharges in atmospheric air // Plasma Science and Technology. Ц2021. ЦV.23. Цє.6. ЦP.064011. https://doi.org/10.1088/2058-6272/abf299

7. Komarskiy A.A., Korzhenevskiy S.R., Komarov N.A. X-ray sources of nanosecond pulses based on semiconductor opening switch for CT // AIP Conference Proceedings. Ц AIP Publishing, 2020. Ц V. 2250. Ц є. 1. https://doi.org/10.1063/5.0013238

8. Serguschichev K.A. et al. Study of the features of ultrafast silicon-carbide current switch for sources of soft x-ray radiation based on capillary plasma // Journal of Physics: Conference Series. Ц IOP Publishing, 2019. Ц V. 1410. Ц є. 1. Ц P. 012237. https://doi.org/10.1088/1742-6596/1410/1/012237

9. Zhang J. et al. Progress in narrowband high-power microwave sources // Physics of Plasmas. Ц 2020. Ц V. 27. Цє. 1.https://doi.org/10.1063/1.5126271

10. Fedorov V.M. et al. Antenna Array with TEM-Horn for Radiation of High-Power Ultra Short Electromagnetic Pulses // Electronics. Ц 2021. Ц V. 10. Ц є. 9. Ц P. 1011. https://doi.org/10.3390/electronics10091011

11. Efremov A.M., Koshelev V.I., Kovalchuk B.M., et al. // Laser and Particle Beams. Ц 2014. Ц V.32. Ц є3. Ц P.413-418. https://doi.org/10.1017/S0263034614000299

12. Singh S.K. et al. A high power UWB system with subnanosecond rise time using balanced TEM horn antenna // 2014 IEEE International Power Modulator and High Voltage Conference (IPMHVC). Ц IEEE, 2014. Ц P. 271-274. https://doi.org/10.1109/IPMHVC.2014.7287261

13. Ahajjam Y. et al. An accurate and compact high power monocycle pulse transmitter for microwave ultra-wideband radar sensors with an enhanced SRD model: applications for distance measurement for lossy materials // Advanced Electromagnetics. Ц 2019. Ц V. 8. Ц є. 3. Ц P. 76-82. https://doi.org/10.7716/aem.v8i3.676

14. Wen S. et al. Large current nanosecond pulse generating circuit for driving semiconductor laser diode // Microwave and Optical Technology Letters. Ц 2019. Ц V. 61. Ц є. 4. Ц P. 867-872. https://doi.org/10.1002/mop.31654

15. Ahmad V. et al. Charge and exciton dynamics of OLEDs under high voltage nanosecond pulse: towards injection lasing // Nature Communications. Ц 2020. Ц V. 11. Ц є. 1. Ц P. 4310. https://doi.org/10.1038/s41467-020-18094-4

16. Kozlov B.A. et al. High-voltage pulse generators for effective pumping of super-atmospheric pressure CO2-lasers // Journal of Physics: Conference Series. Ц IOP Publishing, 2019. Ц V. 1393. Ц є. 1. Ц P. 012010. https://doi.org/10.1088/1742-6596/1393/1/012010

17. Kozlov B., Makhan'ko D., Seredinov V. A new design of high-voltage pulse generators for ignition of volume discharges at super-atmospheric pressures in a pulse-periodical regime // 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). Ц IEEE, 2020. Ц P. 621-624. https://doi.org/10.1109/EFRE47760.2020.9241987

18. Kumar D., Bajpai V., Singh N.K. Nano electrical discharge machiningЦthe outlook, challenges, and opportunities // Materials and Manufacturing Processes. Ц 2021. Ц V. 36. Ц є. 10. Ц P. 1099-1133. https://doi.org/10.1080/10426914.2021.1905832

19. Agrawal M.K., Sonia P.A Mini Review: Hybridized Electric Discharge Machining // IOP Conference Series: Materials Science and Engineering. Ц IOP Publishing, 2021. Ц V. 1116. Ц є. 1. Ц P. 012079. https://doi.org/10.1088/1757-899X/1116/1/012079

20. Chanturiya V.A., Bunin I.Z. Advances in Pulsed Power Mineral Processing Technologies // Minerals. Ц 2022. Ц V. 12. Ц є. 9. Ц P. 1177. https://doi.org/10.3390/min12091177

21. Ghasemi N., Zare F., Hosano H. A review of pulsed power systems for degrading water pollutants ranging from microorganisms to organic compounds // IEEE Access. Ц 2019. Ц V. 7. Ц P. 150863-150891. https://doi.org/10.1109/ACCESS.2019.2947632

22. Gurbanov E.J., Hashimov A.M., Gurbanov K.B. Study of the most energy-efficient modes of generation of high-voltage nanosecond pulses and chemically active discharge products for active disinfection of fluid food products // International Journal on Technical and Physical Problems of Engineering (IJTPE). Ц 2019. Ц є. 38. Ц P. 35-41.

23. Butkus P. et al. Concepts and capabilities of in-house built nanosecond pulsed electric field (nsPEF) generators for electroporation: State of art // Applied Sciences. Ц 2020. Ц V. 10. Ц є. 12. Ц P. 4244. https://doi.org/10.3390/app10124244

24. Abadi M.R.Q.R. et al. High-voltage pulse generators for electroporation applications: A systematic review // IEEE Access. Ц 2022. Ц V. 10. Ц P. 64933-64951. https://doi.org/10.1109/ACCESS.2022.3184015

25. Nuccitelli R. Application of pulsed electric fields to cancer therapy // Bioelectricity. Ц 2019. Ц V. 1. Ц є. 1. Ц P. 30-34. https://doi.org/10.1089/bioe.2018.0001

26.  атаев ».√. ”дарные электромагнитные волны. Ц ћ.: —оветское радио, 1963. Ц 152 с.

27. ќстровский Ћ.ј. ќбразование и развитие ударных электромагнитных волн в лини€х передачи с ненасыщенным ферритом // ∆“‘. Ц 1963. Ц “. 33. Ц є. 9. Ц —. 1080.

28. √апонов ј.¬., ќстровский Ћ.ј., ‘рейдман √.». ”дарные электромагнитные волны // »зв. вузов. –адиофизика. Ц 1967. Ц “. 10. Ц є. 9-10. Ц —. 1376-1413.

29. ћес€ц √.ј. »мпульсна€ энергетика и электроника. Ц ћ.: Ќаука, 2004. Ц 704 с.

30. Driessen A. et al. Design and implementation of a compact 20-kHz nanosecond magnetic pulse compression generator // IEEE Transactions on Plasma Science. Ц 2017. Ц V. 45. Ц є. 12. Ц P. 3288-3299. https://doi.org/10.1109/TPS.2017.2771275

31. Gusev A.I. et al. A 30 GW subnanosecond solid-state pulsed power system based on generator with semiconductor opening switch and gyromagnetic nonlinear transmission lines // Review of Scientific Instruments. Ц 2018. Ц V. 89. Ц є. 9. https://doi.org/10.1063/1.5048111

32. Huang L. et al. Field-line coupling method for the simulation of gyromagnetic nonlinear transmission line based on the Maxwell-LLG system // IEEE Transactions on Plasma Science. Ц 2020. Ц V. 48. Ц є. 11. Ц P. 3847-3853. https://doi.org/10.1109/TPS.2020.3029524

33. Gao J. et al. A compact solid-state high voltage pulse generator // Review of Scientific Instruments. Ц 2019. Ц V. 90. Ц є. 1. DOI: 10.1063/1.5053780

34. Karelin S.Y. et al. Quasi-harmonic oscillations in a nonlinear transmission line, resulting from Cherenkov synchronism // Voprosy Atomnoj Nauki i Tekhniki. Ц 2019. Ц P. 65-70. https://doi.org/10.46813/2019-122-065

35. Priputnev P. et al. 2-D and 3-D numerical simulation of ferrite loaded coaxial transmission lines // 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). Ц IEEE, 2020. Ц P. 434-438. https://doi.org/10.1109/EFRE47760.2020.9241904

36. Ulmaskulov M.R. et al. Multistage converter of high-voltage subnanosecond pulses based on nonlinear transmission lines // Journal of Applied Physics. Ц 2019. Ц V. 126. Ц є. 8. https://doi.org/10.1063/1.5110438

37. Alichkin E.A. et al. Picosecond solid-state generator with a peak power of 50 GW // Review of Scientific Instruments. Ц 2020. Ц V. 91. Ц є. 10. https://doi.org/10.1063/5.0017980

38. Alpert Y., Jerby E. Coupled thermal-electromagnetic model for microwave heating of temperature-dependent dielectric media // IEEE Transactions on plasma science. Ц 1999. Ц V. 27. Ц є. 2. Ц P. 555-562. https://doi.org/10.1109/27.772285

39. Zhong J. et al. Coupled electromagnetic and heat transfer ODE model for microwave heating with temperature-dependent permittivity // IEEE Transactions on Microwave Theory and Techniques. Ц 2016. Ц V. 64. Ц є. 8. Ц P. 2467-2477. https://doi.org/10.1109/TMTT.2016.2584613

40. Sid A., Debbache D., Bendib A. Nonlinear propagation of ultraintense and ultrashort laser pulses in a plasma channel limited by metallic walls // Physics of plasmas. Ц 2006. Ц V. 13. Ц є. 8. https://doi.org/10.1063/1.2219431

41. Andreev N.E. et al. Nonlinear propagation of short intense laser pulses in a hollow metallic waveguide // Physical Review E. Ц 2001. Ц V. 64. Ц є. 1. Ц P. 016404. https://doi.org/10.1103/PhysRevE.64.016404

42. Peñano J.R. et al. Transmission of intense femtosecond laser pulses into dielectrics // Physical Review E. Ц 2005. Ц V. 72. Ц є. 3. Ц P. 036412. https://doi.org/10.1103/PhysRevE.72.036412

43. Ovchinnikov K.N., Uryupin S.A. Effect of heat transfer on the penetration of an electromagnetic pulse into a plasma layer and the inverse skin effect // Contributions to Plasma Physics. Ц 2019. Ц V. 59. Ц є. 7. Ц P. e201800119. https://doi.org/10.1002/ctpp.201800119

44. √лазунов ѕ.—., ¬довин ¬.ј., —лепков ј.». »мпеданс длинноволновой вибраторной антенны, наход€щейс€ в провод€щей среде // ∆урнал радиоэлектроники. Ц 2019. Ц є. 2. https://doi.org/10.30898/1684-1719.2019.2.1

45.  васников ».ј. “ермодинамика и статистическа€ физика. “. 1: “еори€ равновесных систем: “ермодинамика: учебное пособие. »зд. 2-е, сущ. перераб. и доп. Ц ћ.: ≈диториал ”–——, 2002. Ц 240 с. ¬ 3-х т.

46. јхманов —.ј. ћетод ’охлова в теории нелинейных волн // ”спехи физических наук. Ц 1986. Ц “. 149. Ц є. 7. Ц —. 361-390.

47. Wang K. et al. NaTaO3 microwave dielectric ceramic a with high relative permittivity and as an excellent compensator for the temperature coefficient of resonant frequency // Ceramics International. Ц 2021. Ц V. 47. Ц є. 1. Ц P. 121-129. https://doi.org/10.1016/j.ceramint.2020.08.114

48. Fayos-Fernández J., Pérez-Conesa I., Monzó-Cabrera J.D.P., Albaladejo-González J.C. Temperature-Dependent Complex Permittivity of Several Electromagnetic Susceptors at 2.45 GHz // Delft.: AMPERE Newsletter Editor. 2018. Iss. 95. P.2.

49. Luo T. et al. Improvement of quality factor of SrTiO3 dielectric ceramics with high dielectric constant using Sm2O3 // Journal of the American Ceramic Society. Ц 2019. Ц V. 102. Ц є. 7. Ц P. 3849-3853. https://doi.org/10.1111/jace.16415

50. de Ligny D., Richet P. High-temperature heat capacity and thermal expansion of SrTiO 3 and SrZrO 3 perovskites // Physical Review B. Ц 1996. Ц V. 53. Ц є. 6. Ц P. 3013. https://doi.org/10.1103/PhysRevB.53.3013

51. Yuan Y. et al. Effects of compound coupling agents on the properties of PTFE/SiO 2 microwave composites // Journal of Materials Science: Materials in Electronics. Ц 2017. Ц V. 28. Ц P. 3356-3363. https://doi.org/10.1007/s10854-016-5929-8

52. Du K. et al. Phase transition and permittivity stability against temperature of CaSn1-xTixGeO5 ceramics // Journal of the European Ceramic Society. Ц 2022. Ц V. 42. Ц є. 1. Ц P. 147-153. https://doi.org/10.1016/j.jeurceramsoc.2021.09.060

53. Xirouchakis D., Tangeman J.A. High-temperature heat capacity and thermodynamic properties for end-member titanite (CaTiSiO 5) // Phys. and Chem. of Minerals. 2001. V. 28. є 3. P. 167. https://doi.org/10.1007/s002690000124

54. Li L. et al. Dielectric properties of CaCu3Ti4O12, Ba(Fe1/2Nb1/2)O3, and Sr(Fe1/2Nb1/2)O3 giant permittivity ceramics at microwave frequencies // Journal of Applied Physics. Ц 2012. Ц V. 111. Ц є. 6. https://doi.org/10.1063/1.3698627

55. Jacob K.T. et al. High-temperature heat capacity and heat content of CaCu3Ti4O12 (CCTO) // Journal of alloys and compounds. Ц 2009. Ц V. 488. Ц є. 1. Ц P. 35-38. https://doi.org/10.1016/j.jallcom.2009.09.010

56. Berdel K. et al. Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies // IEEE transactions on microwave theory and techniques. Ц 2005. Ц V. 53. Ц є. 4. Ц P. 1266-1271. https://doi.org/10.1109/TMTT.2005.845752

57. Savage M.E. et al. An overview of pulse compression and power flow in the upgraded Z pulsed power driver // 2007 16th ieee international pulsed power conference. Ц IEEE, 2008. ЦV.2. ЦP.979-984. https://doi.org/10.1109/PPPS.2007.4652354

58. Glazunov P.S., Vdovin V.A., Saletskii A.M. / Propagation of Powerful Nano- and Subnanosecond Video Pulses in a Medium with Various Thermodynamic Characteristics/ Journal of Communications Technology and Electronics. Ц 2023. Ц V. 68. Ц є. 8. Ц P. 910Ц919. https://doi.org/10.1134/S1064226923080053

ƒл€ цитировани€:

√лазунов ѕ.—., —алецкий ј.ћ., ¬довин ¬.ј. ‘ормирование фронта ударной волны при распространении наносекундных видеоимпульсов в слабопровод€щих средах с температурной зависимостью диэлектрической проницаемости. // ∆урнал радиоэлектроники. Ц 2023. Ц є. 10. https://doi.org/10.30898/1684-1719.2023.10.2