ÆÓÐÍÀË ÐÀÄÈÎÝËÅÊÒÐÎÍÈÊÈ. eISSN 1684-1719. 2023. ¹10
Îãëàâëåíèå âûïóñêà

Òåêñò ñòàòüè (pdf)

English page

 

DOI: https://doi.org/10.30898/1684-1719.2023.10.2  

ÓÄÊ: 537.86

 

Ôîðìèðîâàíèå ôðîíòà óäàðíîé âîëíû

ïðè ðàñïðîñòðàíåíèè íàíîñåêóíäíûõ âèäåîèìïóëüñîâ

â ñëàáîïðîâîäÿùèõ ñðåäàõ ñ òåìïåðàòóðíîé

çàâèñèìîñòüþ äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè

 

Ï.Ñ. Ãëàçóíîâ 1,2, À.Ì. Ñàëåöêèé 1, Â.À. Âäîâèí 2

 

1 ÌÃÓ èì. Ì. Â. Ëîìîíîñîâà, Ôèçè÷åñêèé ôàêóëüòåò

119991, Ìîñêâà, Ëåíèíñêèå ãîðû, óë. Êîëìîãîðîâà, ä. 1, ñòð. 2

2 ÈÐÝ èì. Â.À. Êîòåëüíèêîâà ÐÀÍ, 125009, Ìîñêâà, óë. Ìîõîâàÿ, 11, êîðï. 7

 

Ñòàòüÿ ïîñòóïèëà â ðåäàêöèþ 22 ñåíòÿáðÿ 2023 ã.

 

Àííîòàöèÿ. Ïðåäëàãàåòñÿ êîíñåðâàòèâíàÿ ìîäåëü ñëàáîïðîâîäÿùèõ ìàòåðèàëüíûõ ñðåä ñ òåìïåðàòóðíîé çàâèñèìîñòüþ äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè, äëÿ êîòîðîé âûïîëíÿþòñÿ íà÷àëà òåðìîäèíàìèêè. Âûâåäåíà ñèñòåìà óðàâíåíèé â ÷àñòíûõ ïðîèçâîäíûõ, îïèñûâàþùàÿ èçìåíåíèå ïðîôèëÿ ýëåêòðîìàãíèòíîãî âèäåîèìïóëüñà, ñ òå÷åíèåì âðåìåíè. Ðàññìîòðåíî ïðèáëèæåíèå, â êîòîðîì äàííóþ ñèñòåìó âîçìîæíî ðåøèòü ïðè ïîìîùè ìåòîäà õàðàêòåðèñòèê. Ïîêàçàíî, ÷òî ïðè ðàñïðîñòðàíåíèè èìïóëüñà âîçíèêàþò äâà êîíêóðèðóþùèõ íåëèíåéíûõ ýôôåêòà: ðîñò ïèêîâîé ìîùíîñòè èìïóëüñà è ôîðìèðîâàíèå óäàðíîé ýëåêòðîìàãíèòíîé âîëíû.

Êëþ÷åâûå ñëîâà: óäàðíàÿ ýëåêòðîìàãíèòíàÿ âîëíà, òåìïåðàòóðíûé êîýôôèöèåíò äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè, íàíîñåêóíäíûé âèäåîèìïóëüñ, ìåòîä õàðàêòåðèñòèê.

Ôèíàíñèðîâàíèå: Ãîñçàäàíèå.

Àâòîð äëÿ ïåðåïèñêè: Âäîâèí Âëàäèìèð Àëåêñàíäðîâè÷, vdv@cplire.ru

 

Ëèòåðàòóðà

1. Rukin S.N. Pulsed power technology based on semiconductor opening switches: A review // Review of scientific instruments. – 2020. – V. 91. – ¹. 1. https://doi.org/10.1063/1.5128297

2. Gundersen M. et al. A review of diverse academic research in nanosecond pulsed power and plasma science // IEEE Transactions on Plasma Science. – 2020. – V. 48. – ¹. 4. – P. 742-748. https://doi.org/10.1109/TPS.2020.2972934

3. Senaj V. et al. JACoW: Sub-Nanosecond Switching of HV SiC MOS Transistors for Impact Ionisation Triggering // JACoW IPAC. – 2021. – V. 21. – P. 4454-4456. https://doi.org/10.18429/JACoW-IPAC2021-THPAB340

4. Sokovnin S.Y., Balezin M.E. Repetitive nanosecond electron accelerators type URT-1 for radiation technology // Radiation Physics and Chemistry. – 2018. – V. 144. – P. 265-270. https://doi.org/10.1016/j.radphyschem.2017.08.023

5. del Barrio Montañés A. et al. Ultra-Fast Generator for Impact Ionization Triggering // JACoW IPAC. – 2022. – V. 2022. – P. 2872-2874. https://doi.org/10.18429/JACoW-IPAC2022-THPOTK044

6. Jintao Q.I.U. et al. Reconstruction of energy spectrum of runaway electrons in nanosecond-pulse discharges in atmospheric air // Plasma Science and Technology. –2021. –V.23. –¹.6. –P.064011. https://doi.org/10.1088/2058-6272/abf299

7. Komarskiy A.A., Korzhenevskiy S.R., Komarov N.A. X-ray sources of nanosecond pulses based on semiconductor opening switch for CT // AIP Conference Proceedings. – AIP Publishing, 2020. – V. 2250. – ¹. 1. https://doi.org/10.1063/5.0013238

8. Serguschichev K.A. et al. Study of the features of ultrafast silicon-carbide current switch for sources of soft x-ray radiation based on capillary plasma // Journal of Physics: Conference Series. – IOP Publishing, 2019. – V. 1410. – ¹. 1. – P. 012237. https://doi.org/10.1088/1742-6596/1410/1/012237

9. Zhang J. et al. Progress in narrowband high-power microwave sources // Physics of Plasmas. – 2020. – V. 27. –¹. 1.https://doi.org/10.1063/1.5126271

10. Fedorov V.M. et al. Antenna Array with TEM-Horn for Radiation of High-Power Ultra Short Electromagnetic Pulses // Electronics. – 2021. – V. 10. – ¹. 9. – P. 1011. https://doi.org/10.3390/electronics10091011

11. Efremov A.M., Koshelev V.I., Kovalchuk B.M., et al. // Laser and Particle Beams. – 2014. – V.32. – ¹3. – P.413-418. https://doi.org/10.1017/S0263034614000299

12. Singh S.K. et al. A high power UWB system with subnanosecond rise time using balanced TEM horn antenna // 2014 IEEE International Power Modulator and High Voltage Conference (IPMHVC). – IEEE, 2014. – P. 271-274. https://doi.org/10.1109/IPMHVC.2014.7287261

13. Ahajjam Y. et al. An accurate and compact high power monocycle pulse transmitter for microwave ultra-wideband radar sensors with an enhanced SRD model: applications for distance measurement for lossy materials // Advanced Electromagnetics. – 2019. – V. 8. – ¹. 3. – P. 76-82. https://doi.org/10.7716/aem.v8i3.676

14. Wen S. et al. Large current nanosecond pulse generating circuit for driving semiconductor laser diode // Microwave and Optical Technology Letters. – 2019. – V. 61. – ¹. 4. – P. 867-872. https://doi.org/10.1002/mop.31654

15. Ahmad V. et al. Charge and exciton dynamics of OLEDs under high voltage nanosecond pulse: towards injection lasing // Nature Communications. – 2020. – V. 11. – ¹. 1. – P. 4310. https://doi.org/10.1038/s41467-020-18094-4

16. Kozlov B.A. et al. High-voltage pulse generators for effective pumping of super-atmospheric pressure CO2-lasers // Journal of Physics: Conference Series. – IOP Publishing, 2019. – V. 1393. – ¹. 1. – P. 012010. https://doi.org/10.1088/1742-6596/1393/1/012010

17. Kozlov B., Makhan'ko D., Seredinov V. A new design of high-voltage pulse generators for ignition of volume discharges at super-atmospheric pressures in a pulse-periodical regime // 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). – IEEE, 2020. – P. 621-624. https://doi.org/10.1109/EFRE47760.2020.9241987

18. Kumar D., Bajpai V., Singh N.K. Nano electrical discharge machining–the outlook, challenges, and opportunities // Materials and Manufacturing Processes. – 2021. – V. 36. – ¹. 10. – P. 1099-1133. https://doi.org/10.1080/10426914.2021.1905832

19. Agrawal M.K., Sonia P.A Mini Review: Hybridized Electric Discharge Machining // IOP Conference Series: Materials Science and Engineering. – IOP Publishing, 2021. – V. 1116. – ¹. 1. – P. 012079. https://doi.org/10.1088/1757-899X/1116/1/012079

20. Chanturiya V.A., Bunin I.Z. Advances in Pulsed Power Mineral Processing Technologies // Minerals. – 2022. – V. 12. – ¹. 9. – P. 1177. https://doi.org/10.3390/min12091177

21. Ghasemi N., Zare F., Hosano H. A review of pulsed power systems for degrading water pollutants ranging from microorganisms to organic compounds // IEEE Access. – 2019. – V. 7. – P. 150863-150891. https://doi.org/10.1109/ACCESS.2019.2947632

22. Gurbanov E.J., Hashimov A.M., Gurbanov K.B. Study of the most energy-efficient modes of generation of high-voltage nanosecond pulses and chemically active discharge products for active disinfection of fluid food products // International Journal on Technical and Physical Problems of Engineering (IJTPE). – 2019. – ¹. 38. – P. 35-41.

23. Butkus P. et al. Concepts and capabilities of in-house built nanosecond pulsed electric field (nsPEF) generators for electroporation: State of art // Applied Sciences. – 2020. – V. 10. – ¹. 12. – P. 4244. https://doi.org/10.3390/app10124244

24. Abadi M.R.Q.R. et al. High-voltage pulse generators for electroporation applications: A systematic review // IEEE Access. – 2022. – V. 10. – P. 64933-64951. https://doi.org/10.1109/ACCESS.2022.3184015

25. Nuccitelli R. Application of pulsed electric fields to cancer therapy // Bioelectricity. – 2019. – V. 1. – ¹. 1. – P. 30-34. https://doi.org/10.1089/bioe.2018.0001

26. Êàòàåâ È.Ã. Óäàðíûå ýëåêòðîìàãíèòíûå âîëíû. – Ì.: Ñîâåòñêîå ðàäèî, 1963. – 152 ñ.

27. Îñòðîâñêèé Ë.À. Îáðàçîâàíèå è ðàçâèòèå óäàðíûõ ýëåêòðîìàãíèòíûõ âîëí â ëèíèÿõ ïåðåäà÷è ñ íåíàñûùåííûì ôåððèòîì // ÆÒÔ. – 1963. – Ò. 33. – ¹. 9. – Ñ. 1080.

28. Ãàïîíîâ À.Â., Îñòðîâñêèé Ë.À., Ôðåéäìàí Ã.È. Óäàðíûå ýëåêòðîìàãíèòíûå âîëíû // Èçâ. âóçîâ. Ðàäèîôèçèêà. – 1967. – Ò. 10. – ¹. 9-10. – Ñ. 1376-1413.

29. Ìåñÿö Ã.À. Èìïóëüñíàÿ ýíåðãåòèêà è ýëåêòðîíèêà. – Ì.: Íàóêà, 2004. – 704 ñ.

30. Driessen A. et al. Design and implementation of a compact 20-kHz nanosecond magnetic pulse compression generator // IEEE Transactions on Plasma Science. – 2017. – V. 45. – ¹. 12. – P. 3288-3299. https://doi.org/10.1109/TPS.2017.2771275

31. Gusev A.I. et al. A 30 GW subnanosecond solid-state pulsed power system based on generator with semiconductor opening switch and gyromagnetic nonlinear transmission lines // Review of Scientific Instruments. – 2018. – V. 89. – ¹. 9. https://doi.org/10.1063/1.5048111

32. Huang L. et al. Field-line coupling method for the simulation of gyromagnetic nonlinear transmission line based on the Maxwell-LLG system // IEEE Transactions on Plasma Science. – 2020. – V. 48. – ¹. 11. – P. 3847-3853. https://doi.org/10.1109/TPS.2020.3029524

33. Gao J. et al. A compact solid-state high voltage pulse generator // Review of Scientific Instruments. – 2019. – V. 90. – ¹. 1. DOI: 10.1063/1.5053780

34. Karelin S.Y. et al. Quasi-harmonic oscillations in a nonlinear transmission line, resulting from Cherenkov synchronism // Voprosy Atomnoj Nauki i Tekhniki. – 2019. – P. 65-70. https://doi.org/10.46813/2019-122-065

35. Priputnev P. et al. 2-D and 3-D numerical simulation of ferrite loaded coaxial transmission lines // 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). – IEEE, 2020. – P. 434-438. https://doi.org/10.1109/EFRE47760.2020.9241904

36. Ulmaskulov M.R. et al. Multistage converter of high-voltage subnanosecond pulses based on nonlinear transmission lines // Journal of Applied Physics. – 2019. – V. 126. – ¹. 8. https://doi.org/10.1063/1.5110438

37. Alichkin E.A. et al. Picosecond solid-state generator with a peak power of 50 GW // Review of Scientific Instruments. – 2020. – V. 91. – ¹. 10. https://doi.org/10.1063/5.0017980

38. Alpert Y., Jerby E. Coupled thermal-electromagnetic model for microwave heating of temperature-dependent dielectric media // IEEE Transactions on plasma science. – 1999. – V. 27. – ¹. 2. – P. 555-562. https://doi.org/10.1109/27.772285

39. Zhong J. et al. Coupled electromagnetic and heat transfer ODE model for microwave heating with temperature-dependent permittivity // IEEE Transactions on Microwave Theory and Techniques. – 2016. – V. 64. – ¹. 8. – P. 2467-2477. https://doi.org/10.1109/TMTT.2016.2584613

40. Sid A., Debbache D., Bendib A. Nonlinear propagation of ultraintense and ultrashort laser pulses in a plasma channel limited by metallic walls // Physics of plasmas. – 2006. – V. 13. – ¹. 8. https://doi.org/10.1063/1.2219431

41. Andreev N.E. et al. Nonlinear propagation of short intense laser pulses in a hollow metallic waveguide // Physical Review E. – 2001. – V. 64. – ¹. 1. – P. 016404. https://doi.org/10.1103/PhysRevE.64.016404

42. Peñano J.R. et al. Transmission of intense femtosecond laser pulses into dielectrics // Physical Review E. – 2005. – V. 72. – ¹. 3. – P. 036412. https://doi.org/10.1103/PhysRevE.72.036412

43. Ovchinnikov K.N., Uryupin S.A. Effect of heat transfer on the penetration of an electromagnetic pulse into a plasma layer and the inverse skin effect // Contributions to Plasma Physics. – 2019. – V. 59. – ¹. 7. – P. e201800119. https://doi.org/10.1002/ctpp.201800119

44. Ãëàçóíîâ Ï.Ñ., Âäîâèí Â.À., Ñëåïêîâ À.È. Èìïåäàíñ äëèííîâîëíîâîé âèáðàòîðíîé àíòåííû, íàõîäÿùåéñÿ â ïðîâîäÿùåé ñðåäå // Æóðíàë ðàäèîýëåêòðîíèêè. – 2019. – ¹. 2. https://doi.org/10.30898/1684-1719.2019.2.1

45. Êâàñíèêîâ È.À. Òåðìîäèíàìèêà è ñòàòèñòè÷åñêàÿ ôèçèêà. Ò. 1: Òåîðèÿ ðàâíîâåñíûõ ñèñòåì: Òåðìîäèíàìèêà: ó÷åáíîå ïîñîáèå. Èçä. 2-å, ñóù. ïåðåðàá. è äîï. – Ì.: Åäèòîðèàë ÓÐÑÑ, 2002. – 240 ñ.  3-õ ò.

46. Àõìàíîâ Ñ.À. Ìåòîä Õîõëîâà â òåîðèè íåëèíåéíûõ âîëí // Óñïåõè ôèçè÷åñêèõ íàóê. – 1986. – Ò. 149. – ¹. 7. – Ñ. 361-390.

47. Wang K. et al. NaTaO3 microwave dielectric ceramic a with high relative permittivity and as an excellent compensator for the temperature coefficient of resonant frequency // Ceramics International. – 2021. – V. 47. – ¹. 1. – P. 121-129. https://doi.org/10.1016/j.ceramint.2020.08.114

48. Fayos-Fernández J., Pérez-Conesa I., Monzó-Cabrera J.D.P., Albaladejo-González J.C. Temperature-Dependent Complex Permittivity of Several Electromagnetic Susceptors at 2.45 GHz // Delft.: AMPERE Newsletter Editor. 2018. Iss. 95. P.2.

49. Luo T. et al. Improvement of quality factor of SrTiO3 dielectric ceramics with high dielectric constant using Sm2O3 // Journal of the American Ceramic Society. – 2019. – V. 102. – ¹. 7. – P. 3849-3853. https://doi.org/10.1111/jace.16415

50. de Ligny D., Richet P. High-temperature heat capacity and thermal expansion of SrTiO 3 and SrZrO 3 perovskites // Physical Review B. – 1996. – V. 53. – ¹. 6. – P. 3013. https://doi.org/10.1103/PhysRevB.53.3013

51. Yuan Y. et al. Effects of compound coupling agents on the properties of PTFE/SiO 2 microwave composites // Journal of Materials Science: Materials in Electronics. – 2017. – V. 28. – P. 3356-3363. https://doi.org/10.1007/s10854-016-5929-8

52. Du K. et al. Phase transition and permittivity stability against temperature of CaSn1-xTixGeO5 ceramics // Journal of the European Ceramic Society. – 2022. – V. 42. – ¹. 1. – P. 147-153. https://doi.org/10.1016/j.jeurceramsoc.2021.09.060

53. Xirouchakis D., Tangeman J.A. High-temperature heat capacity and thermodynamic properties for end-member titanite (CaTiSiO 5) // Phys. and Chem. of Minerals. 2001. V. 28. ¹ 3. P. 167. https://doi.org/10.1007/s002690000124

54. Li L. et al. Dielectric properties of CaCu3Ti4O12, Ba(Fe1/2Nb1/2)O3, and Sr(Fe1/2Nb1/2)O3 giant permittivity ceramics at microwave frequencies // Journal of Applied Physics. – 2012. – V. 111. – ¹. 6. https://doi.org/10.1063/1.3698627

55. Jacob K.T. et al. High-temperature heat capacity and heat content of CaCu3Ti4O12 (CCTO) // Journal of alloys and compounds. – 2009. – V. 488. – ¹. 1. – P. 35-38. https://doi.org/10.1016/j.jallcom.2009.09.010

56. Berdel K. et al. Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies // IEEE transactions on microwave theory and techniques. – 2005. – V. 53. – ¹. 4. – P. 1266-1271. https://doi.org/10.1109/TMTT.2005.845752

57. Savage M.E. et al. An overview of pulse compression and power flow in the upgraded Z pulsed power driver // 2007 16th ieee international pulsed power conference. – IEEE, 2008. –V.2. –P.979-984. https://doi.org/10.1109/PPPS.2007.4652354

58. Glazunov P.S., Vdovin V.A., Saletskii A.M. / Propagation of Powerful Nano- and Subnanosecond Video Pulses in a Medium with Various Thermodynamic Characteristics/ Journal of Communications Technology and Electronics. 2023. V. 68. ¹. 8. P. 910–919. https://doi.org/10.1134/S1064226923080053

Äëÿ öèòèðîâàíèÿ:

Ãëàçóíîâ Ï.Ñ., Ñàëåöêèé À.Ì., Âäîâèí Â.À. Ôîðìèðîâàíèå ôðîíòà óäàðíîé âîëíû ïðè ðàñïðîñòðàíåíèè íàíîñåêóíäíûõ âèäåîèìïóëüñîâ â ñëàáîïðîâîäÿùèõ ñðåäàõ ñ òåìïåðàòóðíîé çàâèñèìîñòüþ äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè. // Æóðíàë ðàäèîýëåêòðîíèêè. – 2023. – ¹. 10. https://doi.org/10.30898/1684-1719.2023.10.2