Journal of Radio Electronics. eISSN 1684-1719. 2023. №10
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2023.10.4
THE DEPENDENCE OF THE SIGNAL ON THE DISPLACEMENT
OF THE LENS SCATTERING CIRCLE
IN THE ANGLE RANGE 0 ° - 90 ° RELATIVE TO THE PIXEL CENTER
OF THE PHOTOSENSITIVE MATRIX
I.V. Znamenskii
Precision Instrumentation Systems Scientific and Production Corporation,
111024, Russia, Moscow, Aviamotornaya str, 53
The paper was received June 8, 2023.
Abstract. The subject of study. An algorithm has been developed for calculating the change in the irradiation level of a matrix pixel when the focal spot shifts relative to the center of the matrix pixel in the range from 0 ° to 90 °. Two types of pixel irradiance distribution are considered: distribution in the lens scattering circle in the form of a gaussian rotation and uniform irradiance. Method. The calculation is based on the method of dividing the lens scattering circle on the matrix pixel into separate areas, according to which the irradiance is calculated. The displacement of the lens scattering circle by ∆x along the X axis and by ∆y along the Y axis is taken as normalized to the spot radius. To create a two-dimensional graph of the dependence of the pixel irradiance on the displacement of the lens scattering circle along the X, Y axes, we introduce the transformed relative displacement of the lens scattering circle γ. The main results. An algorithm has been developed for calculating the change in the irradiation level of a matrix pixel when the lens scattering circle is shifted relative to the matrix pixel for two cases of pixel irradiation: the distribution in the lens scattering circle in the form of a gaussian rotation and uniform irradiation. The dependence of the normalized irradiance of the matrix pixel on the transformed relative displacement of the lens scattering circle γ at an angle of 0 °, 30 °, 45 °, 60 °, 90 ° is plotted on the graph for the above cases of irradiation.
Keywords: lens, diffraction, matrix, pixel, Bessel function, Gaussian function, Airy disk.
Financing:
Correspondingauthor: Znamenskii Igor Vsevolodovich, igorznamenskii@yandex.ru
References
1. Tarasov V. V., Torshina I. P., Yakushenkov YU. G. Sovremennye problemy optotekhniki //Moskva, Rossiya: MIIGAIK. – 2014.
2. Fedoseev V., Kolosov M. Optiko-ehlektronnye pribory orientatsii i navigatsii kosmicheskikh apparatov. – Litres, 2017.
3. Burdinov K. A., Shashkina K. M., Shagkhaei EH. Issledovanie sistemy avtomaticheskogo upravleniya stabilizatsii izobrazheniya bortovykh optiko-ehlektronnykh priborov navedeniya i slezheniya //Advanced Engineering Research. – 2022. – T. 22. – №. 2. – S. 150-160. https://doi.org/10.23947/2687-1653-2022-22-2-150-160
4. Barskii A. G. Optiko-ehlektronnye sledyashchie sistemy: ucheb. posobie //M.: Universitetskaya kniga. – 2009.
5. Astapov YU. M. Teoriya optiko-ehlektronnykh sledyashchikh sistem. – Nauka. Gl. red. fiz.-mat. lit., 1988.
6. Miroshnikov M. M. Teoreticheskie osnovy optiko-ehlektronnykh priborov. – Lan', 2010.
7. Sivukhin D. V. Obshchii kurs fiziki. Optika. Izd. 2 e, ispr. – 1985.
8. Sanson F., Frueh C. Quantifying uncertainties in signal position in non-resolved object images: Application to space object observation //Advances in Space Research. – 2019. – T. 63. – №. 8. – S. 2436-2454.
9. Medennikov P. A. Algoritm obnaruzheniya i opredeleniya koordinat tochechnogo ob"ekta //Opticheskii zhurnal. – 2019. – T. 86. – №. 8. – S. 65-69.
10. Ma X., Rao C., Zheng H. Error analysis of CCD-based point source centroid computation under the background light //Optics express. – 2009. – T. 17. – №. 10. – S. 8525-8541.
11. Baranov P. S., Mantsvetov A. A. Optimizatsiya otnosheniya radiusa kruzhka rasseyaniya ob"ektiva k razmeru piksela dlya povysheniya tochnosti otsenki koordinat izobrazhenii malorazmernykh ob"ektov //Izvestiya vysshikh uchebnykh zavedenii Rossii. Radioehlektronika. – 2016. – №. 2. – S. 49-53.
12. Avanesov G. A., Kondrat'eva T. V., Nikitin A. V. Issledovanie smeshcheniya ehnergeticheskogo tsentra izobrazhenii zvezd otnositel'no geometricheskogo tsentra na PZS-matritse i korrektsiya metodicheskoi oshibki //Mekhanika, upravlenie i informatika (sm. v knigakh). – 2009. – №. 1. – S. 421-446.
13. Starosotnikov N. O., Fedortsev R. V. Modelirovanie metodicheskoi pogreshnosti opredeleniya tsentra tyazhesti izobrazheniya test-ob"ekta v opticheskikh izmeritel'nykh priborakh s matrichnymi priemnikami. – 2014.
14. Osadchii I. S. Metod subpiksel'nogo izmereniya koordinat izobrazhenii zvezd dlya priborov astroorietatsii kosmicheskogo bazirovaniya //Zhurnal radioehlektroniki. – 2015. – №. 5. – S. 5-5.
15. Tsytsulin A. K. i dr. Tverdotel'nye telekamery: nakoplenie kachestva informatsii //SPb.: Izd-vo SPBGEHTU «LEHTI. – 2014.
16. Egoshkin N. A. Korrektsiya smaza i rasfokusirovki sputnikovykh izobrazhenii s uchetom geometricheskikh iskazhenii //Tsifrovaya obrabotka signalov. – 2016. – №. 3. – S. 37.
17. Bronshtein I. N., Semendyaev K. A. Spravochnik po matematike dlya inzhenerov i uchashchikhsya vtuzov. – Lan', 2009.
18. Prudnikov A. P., Brychkov YU. A., Marichev O. I. Integraly i ryady. V 3-kh tt. – Fizmatlit, 2003. – S. 708-708.
For citation:
Znamenskii I.V. The dependence of the signal on the displacement of the lens scattering circle in the anglerange 0-90º relative to the pixel center of the photosensitive matrix. // Journal of Radio Electronics. – 2023. – №. 10. https://doi.org/10.30898/1684-1719.2023.10.4 (In Russian)