Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹10

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.10.17 

 

 

 

C2 MODEL OF THE WIDE-BANDGAP MOSFET

 

V.N. Biryukov

 

Institute for Radio Engineering Systems and Control of Southern Federal University,
347900, Russia, Taganrog, Nekrasovsky str, 44

 

The paper was received June 6, 2024.

 

Abstract. A set of new regional (segmented) models of MOS transistors is proposed. In the models, the current in saturation is not considered independently, but as an extrapolation of the current of the physical model in the unsaturated (linear) mode by Padé approximant. The first two coefficients of the approximant are determined from the condition of continuity of the transistor current at the boundary of the saturated region along with two derivatives; the remaining coefficients are determined by parametric optimization based on measured current-voltage characteristics. This saturation current model is invariant with respect to the model for the unsaturated mode and the physics of processes at current saturation. These models were created primarily for simulating transistors manufactured using various wide-gap semiconductor technologies: silicon carbide, gallium nitride and diamond. The results of modeling GaN and SiC transistors with low root mean square error are presented.

Keywords: MOSFET, compact model, C2-continuity, silicon-carbide (SiC), Gallium-nitride (GaN), Diamond (C)

Corresponding author: Biryukov Vadim Nikolaevich, vnbiryukov@yandex.ru

References

1. Mantooth H. A., Kang Peng, Santi E., et al. Modeling of wide-bandgap power semiconductor devices. Part I // IEEE Transactions Electron Devises. − 2015. – V. 62. − No. 2. − P. 423–433. − https://doi.org/10.1109/ted.2014.2368274.

2. Jinping Zhang, Qinglin Wu, Zixun Chen, et al. SiC Double Trench MOSFET with Split Gate and Integrated Schottky Barrier Diode for Ultra-low Power Loss and Improved Short-circuit Capability // Chinese Journal of Electronics. 2024. − V. 33. No. 2. – P. 1-10. https://doi.org/10.23919/cje.2022.00.394.

3. Nelson B. W., Lemmon A. N., Deboi B. T. et al. Computational efficiency analysis of SiC MOSFET models in SPICE: static behavior // IEEE Open Journal of Power Electronics. 2020. No. 1. P. 499-512, https://doi.org/10.1109/OJPEL.2020.3036034.

4. Bottaro E., Rizzo S. A., Salerno N. Circuit models of power MOSFETs leading the way of GaN HEMT modelling—A Review // Energies. – 2022. – V. 15. P. 3415–3447. https://doi.org/10.3390/en15093415.

5. Gulyaev Y.V., Mityagin A. Y., Chucheva G. V., et al. FET on hydrogenated diamond surface // Journal of Communications Technology and Electronics.  2014. V. 59. No. 3. P. 282-287. https://doi.org/10.7868/S0033849414030061.    

6. Yosuke Sasama, Taisuke Kageura, Masataka Imura, et al. High-mobility p-channel wide-bandgap transistors based on hydrogen-terminated diamond/hexagonal boron nitride // Nature Electronics. 2022. V. 5. No. 1. − P. 37–44. https://doi.org/10.1038/s41928-021-00689-4.

7. BSIM-BULK Technical Manual. (2017). [Online]. Available: http://www.bsim.berkeley.edu/models/bsimbulk/

8. Biryukov V. N., Haritonova V. R., Portnykh D. A. Static model of power silicon MOSFET // Zhurnal Radioelektroniki Journal of Radio Electronics. – 2020. − No. 8. P. 1-8. https://doi.org/10.30898/1684-1719.2020.8.8.

9. Mudholkar M., Shamim A. J., Ericson M. N., et al. Datasheet driven silicon carbide power MOSFET model // IEEE Transactions on Power Electronics. – 2014. – V. 29. − No.5. − P. 2220–2228 https://doi.org/10.1109/TPEL.2013.2295774.

10. Jouha W., Oualkadi A. E., Dherbécourt P., et al. Silicon carbide power MOSFET model: An accurate parameter extraction method based on the Levenberg–Marquardt algorithm // IEEE Transactions on Power Electronics. 2018. V. 3. No. 11. P. 9130–9133. https://doi.org/10.1109/TPEL.2018.2822939.  

11. Pilipenko A. M., Biryukov V. N. Efficiency improvement of the random search algorithm for parametric identification of electronic components models // 2016 International Siberian Conference on Control and Communications (SIBCON). − 2016. P. 5–11. https://doi.org/10.1109/SIBCON.2016.7491703.

12. Min-Chie Jeng. Design and Modeling of Deep-Submicrometer MOSFETS // University of California, Berkeley, Memorandum No. UCB/ERL M90/90/, Available at: https://www2.eecs.berkeley.edu/Pubs/TechRpts/1990//ERL-90-90.pdf, 2024-02-23.

13. Bandali M. B. The effects of the field dependence of carrier mobility on the validity of the gradual channel approximation in insulated-gate field-effect transistors // Solid-State Electronics. 1971. − V. 14. No. 12. P. 1325-1327. https://doi.org/10.1016/0038-1101(71)90122-5.

14. McNutt Ty R., Hefner A. R., Mantooth H. A., et al. Silicon carbide power MOSFET model and parameter extraction sequence // IEEE Transactions on Power Electronics. – 2007. − V. 22. − No. 2. − P. 353–363. − https://doi.org/10.1109/TPEL.2006.889890.

15. Li Xin, Luo Yifei, Shi Zenan, et al. An Improved Physics-Based Circuit Model for SiC MOSFET // Transactions of China Electrotechnical Society. 2022. V. 37. No. 20, P. 5214–5226. DOI.org/10.19595/j.cnki.1000-6753.tces.210225

16. Biryukov V. N. Template modeling of a p-channel MOSFET // Zhurnal Radioelektroniki Journal of Radio Electronics. 2019. ­ No. 2. Available at https://doi.org/10.30898/1684-1719.2019.2.11.

For citation:

Biryukov V.N. C2 Model of the Wide-Bandgap MOSFET. // Journal of Radio Electronics. – 2024. – ¹. 10. https://doi.org/10.30898/1684-1719.2024.10.17 (In Russian)