"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 9, 2016

contents             full texthtml,   pdf   

A method of increasing the density of field-effect transistors in a power amplifier

E. L. Pankratov, A. S. Bulaeva

N.I.Lobachevsky Nizhny Novgorod State University

The paper is received on August 9, 2016

Abstract. In this paper we consider an approach to increase the density of field-effect transistors which are the components of a power amplifier. In the framework of this approach it is also possible to decrease dimensions of these transistors. The approach is based on manufacturing heterostructure with special configuration. After the manufacturing required areas of the heterostructure have been doped by diffusion or by ion implantation to produce required type of conductivity (p or n). Further we consider optimized annealing of dopant and/or radiation defects to manufacture more compact spatial distributions of dopants with at the same time with increasing of homogeneity of dopant concentrations in doped areas. In this paper we also introduce an analytical approach for prognosis of technological process. The approach gives a possibility to take into account dependences of physical parameters (dopant diffusion coefficient, limit of solubility of dopant and other) on coordinate and at the same time on time. The approach gives also a possibility to take into account nonlinearity of the considered processed at the same time with the above dependences.

Keywords: power amplifier; field-effect heterotransistors; increasing of density of heterotransistors.


[1] S.A.Z. Murad, M.N. Md Isa, F.A. Bakar, R. Sapawi. Recent Advances in Electrical and Electronic Engineering. Vol. 9 (1). P. 63-67 (2016).

[2] G. Volovich. Modern chips UM3Ch class D manufactured by firm MPS. Modern Electronics. Issue 2. P. 10-17 (2006).

[3] A. Kerentsev, V. Lanin. Constructive-technological features of MOSFET-transistors. Power Electronics. Issue 1. P. 34 (2008).

[4] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Litvin, V.V. Milenin, A.V. Sachenko. Semiconductors. Vol. 43 (7). P. 897-903 (2009).

[5] N.I. Volokobinskaya, I.N. Komarov, T.V. Matioukhina, V.I. Rechetniko, A.A. Rush, I.V. Falina, A.S. Yastrebov. AuTiBx-n-6H-SiC Schottky barrier diodes: the features of current flow in rectifying and nonrectifying contacts. Semiconductors. Vol. 35 (8). P. 1013-1017 (2001).

[6] A. Subramaniam, K. D. Cantley, E.M. Vogel. Active and Passive Electronic Components. Vol. 2013, ID 525017 (2013).

[7] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. Appl. Phys. Lett. Vol. 89 (17), 172111-172114 (2006).

[8] H.T. Wang, L.S. Tan, E. F. Chor. J. Appl. Phys. Vol. 98 (9), 094901-094905 (2006).

[9] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N. Drozdov, V.D. Skupov. Diffusion processes in semiconductor structures during microwave annealing. Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-843 (2003).

[10] V.V. Kozlivsky. Modification of semiconductors by proton beams (Nauka, Sant-Peterburg, 2003, in Russian).

[11] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev, 1979, in Russian).

[12] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991).

[13] P.M. Fahey, P.B. Griffin, J.D. Plummer. Rev. Mod. Phys. Vol. 61 (2). P. 289-388 (1989).

[14] M.L. Krasnov, A.I. Kiselev, G.I. Makarenko. Integral equations (Science, Moscow, 1976).

[15] E.L. Pankratov. Russian Microelectronics. Vol. 36 (1). P. 33-39 (2007).

[16] E.L. Pankratov. Int. J. Nanoscience. Vol. 7 (4-5). P. 187-197 (2008).

[17] E.L. Pankratov. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010).

[18] E.L. Pankratov, E.A. Bulaeva. J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013).

[19] E.L. Pankratov, E.A. Bulaeva. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014).

[20] E.L. Pankratov, E.A. Bulaeva. Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1250035 (2012).

[21] E.L. Pankratov, E.A. Bulaeva. J. Comp. Theor. Nanoscience. Vol. 11 (1). P. 91-101 (2014).