Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 9
Contents

Full text in Russian (pdf)

Russian page

 

DOI  https://doi.org/10.30898/1684-1719.2020.9.10

UDC 661.718.33:547.979.733

 

Spectral properties study of Bi porphyrins complexes for biophotonics and immune therapy

 

A. S. Gorshkova, V. D. Rumyantseva, I. P. Shilov

Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, acad. Vvedenskogo sq., 1, Fryazino, Moscow Region, 141190 Russia

 

The paper is received on September 17, 2020

 

Abstract. Due to the 2020 Covid-19 pandemic, bismuth compounds are of particular interest in the treatment of coronavirus infection. Bismuth porphyrins complexes of various spatial configurations were synthesized. The influence of various substituents on spectral characteristics was evaluated by UV-vis, luminescence spectra, IR-, 1H NMR- and  X-ray photoelectron spectroscopies.

Key words: bismuth complexes, porphyrins, spectral characteristics, biophotonics, immune therapy, coronavirus infection.

References

1.     Yukhin Yu.M., Mikhailov Yu.I. Himiya vismutovyh soedinenij i materialov. [Chemistry of bismuth compounds and materials]. Siberian Branch of the RAS, Novosibirsk. 2001. 359 p. (In Russian)

2.     Gorshkova A.S., Rumyantseva V.D., Mironov A.F. Compounds of bismuth and its porphyrine complexes: application, structure and properties. Fine chemical technologies. 2018. Vol.13.  No.2. P.5-20. Available at: https://www.finechem-mirea.ru/jour/article/view/137. https://doi.org/10.32362/2410-6593-2018-13-2-5-20 (In Russian)

3.     Chuchalin A.G., editor. Respiratornaya medicina v 3-h tomah. [Respiratory medicine in 3 volumes]. Vol.2. Moscow, Litterra Publ. 2017. 544 p. (In Russian)

4.     Yang N., Tanner J.A., Wang Z., Huang J., Zheng B., Zhu N., Sun H. Inhibition of SARS coronavirus helicase by bismuth complexes. Chemical Communication. 2007. P.4413-4415. Avaliable at: https://pubs.rsc.org/en/content/articlelanding/2007/cc/b709515e#!divAbstract.  https://doi.org/10.1039/B709515E

5.     Tanner J. A., Zheng B. J., Zhou J., Watt R. M., Jiang J. Q., Wong K. L., Lin Y.P., Lu L.Y., He M. L., Kung H.F., Kesel A. J., Huang J. D. The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS Coronavirus. Journal of Chemical Biology. 2005. Vol.12. P.303–311. Avaliable at: https://www.sciencedirect.com/science/article/pii/S107455210500027X?via=ihub.   https://doi.org/10.1016/j.chembiol.2005.01.006

6.     Bernini A., Spiga O., Venditti V., Prischi F., Bracci L., Huang J. D., Tanner J. A., Niccolai N. Tertiary structure prediction of SARS coronavirus helicase. Biochemical and Biophysical Research Communications. 2006. Vol.343. No.4. P.1101–1104.

7.     Tanner J.A., Watt R.M., Chai Y.B., Lu L.Y., Lin M.C., Peiris J.S., Poon L.L., Kung H.F., Huang J.D. The severe acute respiratory syndrome (SARS) Coronavirus NTPase/helicase belongs to a distinct class of 5’ to 3’ viral helicases. Journal of Biological Chemistry. 2003. Vol.278. P.39578–39582. Avaliable at: https://www.jbc.org/content/278/41/39578 https://doi.org/10.1074/jbc.C300328200

8.     Fischer H., Orth H. Die Chemie des Pyrrols. Band II. Haelfte 1. 1938. S.197.

9.     Smith K.M. Porphyrins and metalloporphyrins. Elsevier, Amsterdam-Oxford-New York. 1975. 800 p.

10. Koifman O.I., Semeikin A.S., Berezin B.D. Porfiriny: Struktura, svojstva, sintez. [Porphyrins: Structure, Properties, Synthesis]. Edited by Enikolopyan N.S. Moscow, Nauka Publ. 1985. P.205212. (In Russian)

11. Lindsey J.S., Schreiman I.C., Hsu H.C., Kearney P.C., Marquerettaz A.M. Rothemund and Adler-Longo Reactions Revisited: Synthesis of Tetraphenylporphyrins under Equilibrium Conditions. Journal of Organic Chemistry. 1987. Vol.52. P.827836. Avaliable at: https://pubs.acs.org/doi/10.1021/jo00381a022

12. Ageeva T.A., Golubev D.V., Gorhkova A.S. Ionov A.M., Koifman O.I., Mozhchil R.N., Rumyantseva V.D., Sigov A.S., Fomichev V.V. Synthesis and spectroscopic studies of bismuth(III) iodide porphyrin. Macroheterocycles. 2018. Vol.11. No.2. P.155161. Avaliable at: https://macroheterocycles.isuct.ru/en/mhc180171 https://doi.org/10.6060/mhc180171

13.  Wagner B., Dehnhardt N., Schmid M., Klein B. P., Ruppenthal L., Müller P., Zugermeier M., Gottfried J. M., Lippert S., Halbich M.-U., Rahimi-Iman A., Heine J. Color Change Effect in an Organic–Inorganic Hybrid Material Based on a Porphyrin Diacid. Journal of Physical Chemistry C. 2016. Vol.120. No.49. P.28363–28373. Avaliable at: https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b11188

 

For citation:

Gorshkova A.S., Rumyantseva V.D., Shilov I.P. Spectral properties study of Bi porphyrins complexes for biophotonics and immune therapy. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No.9. https://doi.org/10.30898/1684-1719.2020.9.10 (In Russian)