Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 9
Contents

Full text in Russian (pdf)

Russian page

 

DOI  https://doi.org/10.30898/1684-1719.2020.9.3

UDC 537.871.7

 

Scattering of a magnetoelastic wave by a cavity in a ferromagnet with a rotating ferromagnetic cylinder

 

S. N. Maryshev 1, A. V. Moiseev 1, E. A. Vilkov 2

1 Moscow Institute of Physics and Technology (National University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia

2 Fryazino Branch of Kotelnikov Institute of Radioengineering and Electrons of the Russian Academy of Sciences, Vvedensky sq., 1, Fryazino, Moscow Region, 141190, Russia


The paper is received on August 31, 2020

 

Abstract. Theoretically we consider the features of scattering of a plane shear magnetoelastic wave by a ferromagnetic rotating cylinder, which is placed without acoustic contact inside a ferromagnet of the iron-trium garnet type. It is shown that due to the connection between the rotating cylinder and the external magnetoactive medium by magnetic fields through the gap, the rotation of the cylinder in the cavity contributes to the redistribution of energy between the partial waves of the scattered field. As a result, there is a well-expressed asymmetry of the scattering polars in the vicinity of the ferromagnetic resonance frequencies and a modulation of small-scale oscillations of the spectra of the full cross-section of the scattering near the magnetoacoustic resonance that resembles beats. It is established that the rotation of cylindrical inhomogeneity can be considered as a new channel for controlling the propagation and transformation of magnetoelastic waves in metamaterials. It is noted that the results of wave scattering by the rotating cylindrical inhomogeneity of a ferromagnet can form a theoretical basis for the development of monitoring systems for devices in which the rotation of parts is the basis for functioning. 

Key words: magnetoelastic waves, magnetostriction, ferromagnetic cylinder, rotation, polar scattering, total section of scattering.

References

1. Gulyaev Yu.V., Maryshev S.N., Shevyakhov N.S. Electroacoustic wave retardation in a piezoelectric gap with relative longitudinal displacement. Technical Physics Letters. 2006. Vol.32. No.10. P.876–879.

2. Maryshev S.N., Shevyakhov N.S.  Electroacoustic wave in a gap between piezoelectrics undergoing oscillatory displacement.  Technical Physics Letters. 2017. Vol.43. P.1012. https://doi.org/10.1134/S1063785017110268

3. Maryshev S. N., Moiseev A. V., Vilkov E. A., Fomin L. A.   The influence of the relative longitudinal displacement of ferromagnetic crystals on the spectrum of slot-hole magnetoelastic waves. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2018. No.11. https://doi.org/10.30898/1684-1719.2018.11.8 (In Russian)

4. Maryshev S.N., Moiseev A.V., Vilkov E.A., Fomin L.A. Spectral properties of magnetoelastic waves in the gap structure of ferromagnetic films during their subsonic relative displacement. Zhurnal Radioelektroniki - Journal of Radio Electronics.2019. No.17. https://doi.org/30898/1684-1719.2019.7.8 (In Russian)

5. Nikitov S.A., Vilkov E.A., Moiseev A.V. Magnetostatic waves in the gap between two ferromagnetic films that move relative to each other. Journal of Communications Technology and Electronics. 2012. Vol.57. No.11. P.1187-1193.

6. Vilkov E.A., Moiseev A.V, Shavrov V.G. Magnetoelastic wave tunneling via a gap between ferroelectric crystals with relative longitudinal displacement. Tech. Phys. Lett.. 2009. Vol.35. P.873-876. https://doi.org/10.1134/S1063785009090260.

7. Vilkov E.A., Moiseev A.V., Shavrov V.G. Tunneling of magnetoacoustic waves through a gap in ferromagnetic crystals with a relative longitudinal displacement.  Physics of the Solid State. 2011. Vol.53. No. 3. P.504-509.

8. Vilkov E.A., Moiseev A.V. Magnetostatic waves in the gap of ferromagnetic crystals with relative longitudinal displacement. Technical Physics. The Russian Journal of Applied Physics. 2010. Vol. 55. No.6. P.890-892.

9. Maryshev S.N., Shavrov V.G., Shevyakhov N.S. Shear magnetoelastic modes in a ferromagnetic cylinder.  Acoustical Physics. 2006. Vol.52. No.2. P.194-199.

10. Shevyakhov N. S., Maryshev S. N. Shear wave scattering by a cavity in a piezoelectric with a rotating piezoelectric cylinder. Physical Acoustics. Nonlinear acoustics. Optoacoustics. Propagation and diffraction of waves. Acoustic measurements and standardization. Proceedings of the XXII session of The Russian Acoustic Society and the Session of the RAS scientific Council on acoustics, Vol. 1. – Moscow, GEOS Publ. 2010. P.245-249. (Iin Russian)

11. Ignatov Yu.A., Klimov A.A., Nikitov S.A. Anomalous doppler effect observed during propagation of magnetostatic waves in ferromagnetic films and ferrite-dielectric-metal structures. Journal of Communications Technology and Electronics. 2010. Vol.55. No.4. P.449-456.

12. Daniel D. Stancil et al. Observation of an inverse Doppler shift from left-handed dipolar spin waves. Physical Review B. 2006. Vol.74. P.060404.

13. Reed E.J., Soljacic M. Jonnopoulos J.D. Reversed Doppler Effect in Photonic Crystals.  Phys. Rev. Lett. 2003. Vol.91. No.13. P.133901.

14. Hu X., Hang Z., Li J., et al Anomalous Doppler effects in phononic band gaps.  Phys. Rev. E. 2006. Vol.73. No.1. P.015602.

15. Vilkov E.A., Shavrov V.G., Shevyakhov N S.  Interaction of a Shear Wave with a Moving Domain Wall in an Iron Garnet Crystal.  Acoustical Physics. 2001. Vol.47. No.2. P.160–168.

16. Yakovlev Yu.M., Gendelev S.Sh. Monokristally ferritov v radioelektronike. [Mono-crystals of ferrites in Radioelectronics]. Moscow, Sovetskoe Radio Publ. 1975. 360 p. (In Russian)

17. Shevyakhov N.S. Features of shear wave scattering by a cylindrical cavity with a semiconductor in a hexagonal piezoelectric. Akusticheskii Zhurnal – Acoustic Journal. 1985.  Vol.31. No.3. P.380-384. (In Russian)

18. Hönl H., Maue A.W., Westpfahl K. Theory of diffraction. In Handbuch der Physik. Springer‐Verlag, Berlin. 1961. Vol. XXV/1. P. 218–544.

19. Vilkov E.A., Shevyakhov N.S., Shavrov V.G. Efficiency of shear surface wave transformation by the motion of the confining domain wall. Technical Physics. The Russian Journal of Applied Physics. 2003. Vol.48. No.3. P.354-360.

20. Viktorov I.A. Zvukovye poverchnostnye volny [Sound surface waves in solids]. Mocow, Nauka Publ. 1981.  287 p. (In Russian)

 

For citation:

Maryshev S.N., Moiseev A.V., Vilkov E.A. Scattering of a magnetoelastic wave by a cavity in a ferromagnet with a rotating ferromagnetic cylinder. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No.9. https://doi.org/10.30898/1684-1719.2020.9.3 (In Russian)