Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹9
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2024.9.10
USING THE MODIFIED METHOD OF AUXILIARY SOURCES
IN THE DIFFRACTION PROBLEM OF AN ELECTROMAGNETIC
IMPULSE ON A SUBSURFACE IMPEDANCE CYLINDER
Muzalevskiy K.V.
Kirensky Institute of Physics Federal Research Center KSC
- Siberian Branch Russian Academy of Sciences The Russian Federation
660036, Krasnoyarsk, Akademgorodok 50 bld. 38.
The paper was received August 31, 2024.
Abstract. In contrast to the classical method of auxiliary sources (MAS) with the location of discrete sources (DS) on a closed additional contour, this article investigates the use of a complete system of functions for describing DS fields localized on an open curve in a modified MAS (MMAS). The MMAS was applied to solve a two-dimensional diffraction problem of a broadband electromagnetic impulse on an impedance cylinder located in free space and in the subsurface. The electric thread was a source of external current, excited by an impulse of 1.6 ns duration with a spectrum width from 122 MHz to 726 MHz (at the level of -6 dB). In various combinations, fresh water, thawed and frozen soil, air, and ice were used as the filling medium of the cylinder and the dielectric half-space. The complete system of functions for describing the fields of DS was constructed based on the Hankel functions of the first kind of zero order, the corresponding Green's function for the layered medium problem, and their derivatives in the direction of normal to the curve on which the DS was placed. When compared with the finite difference time domain method (FDTD), it is shown that the MMAS, using Leontovich impedance boundary conditions, can describe impulse fields, scattered by a dielectric cylinder with practically significant accuracy. It has been established that in the case of an elliptical cylinder, the MMAS requires approximately half as many auxiliary DSs compared to the classical MAS while achieving the same accuracy of the solution. In general, this article confirms the possibility of using a complete system of functions to describe the fields of DSs, localized on an open curve for the solving of impulse diffraction problems on subsurface impedance cylinders.
Key words: subsurface radiolocation, ultra-wideband pulses, auxiliary discrete source, diffraction, surface impedance.
Financing: Results were obtained within the state assignment of Kirensky Institute of Physics.
Corresponding author: Muzalevskiy Konstantin Victorovich, rsdkm@ksc.krasn.ru
References
1. Kyurkchan A.G., Smirnova N.I., Kleev A.I. Metody resheniya zadach difraktsii, osnovannye na ispol'zovanii apriornoi analiticheskoi informatsii. M.: Fizmatlit.– 2022. –304 p.
2. Vasil'ev E.N. Vozbuzhdenie tel vrashcheniya. M.: Radio i svyaz'. – 1987.–272 p.
3. Kupradze V. D. O priblizhennom reshenii zadach matematicheskoi fiziki //Uspekhi matematicheskikh nauk. – 1967. – V. 22. – ¹. 2.– P. 59-107.
4. Eremin YU.A., Sveshnikov A.G. Metod diskretnykh istochnikov v zadachakh ehlektromagnitnoi difraktsii. M.: Izd-vo MGU. –1992. –182p.
5. Apel'tsin V.F., Kyurkchan A.G. Analiticheskie svoistva volnovykh polei. M.: Izd-vo MGU. –1990. –207 p.
6. Anyutin A. P., Kyurkchan A. G., Minaev S. A. Modifitsirovannyi metod diskretnykh istochnikov// Radiotekhnika i ehlektronika. – 2002. – V. 47. – ¹. 8. – P. 955-960.
7. Kyurkchan A.G., Smirnova N.I. Mathematical Modeling in Diffraction Theory (Chapter 1). Elsevier. –2016. –P. 1-49.
8. Eremin YU. A., Sveshnikov A. G. Kvaziklassicheskie modeli kvantovoi nanoplazmoniki na osnove metoda diskretnykh istochnikov (Obzor)// Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki. – 2021. – V. 61. – ¹. 4. – P. 580-607.
9. Belichenko V. P., et al. Matematicheskie metody v granichnykh zadachakh ehlektrodinamiki. Tomsk: Izd-vo TGU. – 1990.–172 p.
10. Vainshtein L.A. Ehlektromagnitnye volny. M.: Sovetskoe radio. –1957. –581 p.
11. Eremin Y. A. et al. A new method of internal auxiliary source-sinks (MIASS) for two-dimensional interior Dirichlet acoustic problems// Journal of Computational and Applied Mathematics. – 2021. – V. 386. – P. 113231.
12. Eremin Y. A. et al. New scheme of the discrete sources method for two-dimensional scattering problems by penetrable obstacles// Journal of Computational and Applied Mathematics. – 2023. – V. 417. – P. 114556.
13. Muzalevskii K.V. Difraktsiya ehlektromagnitnogo impul'sa na ob»ekte v neodnorodnoi srede// Tez. dok. tridtsat' pervoi nauch. konf. studentov, aspirantov.– Barnaul.– AlTGU. –2004.– P. 34-35.
14. Komarov S.A., Muzalevskii K.V. Impul'snoe zondirovanie neodnorodnoi sredy // Izvestiya Altaiskogo gosudarstvennogo universiteta. –2005.– V. 35.– ¹ 1.– P. 113-115.
15. Komarov S. A., Mironov V. L., Muzalevsky K. V. GPR signal simulations in the course of freeze/thaw process for a permafrost area // International Geoscience and Remote Sensing Symposium. – 2005. – V. 7. – P. 4600.
16. Malakshinov N. P., Skobelev S. P. Rasseyanie impul'snoi ehlektromagnitnoi volny na tsilindre v diehlektricheskom poluprostranstve // Radiotekhnika. – 2007. – ¹. 10. – P. 75-80.
17. Ehpov M.I., Mironov V.L., Muzalevskii K.V. Sverkhshirokopolosnoe ehlektromagnitnoe zondirovanie neftegazovogo kollektora. Novosibirsk: SB RAS.– 2011.– 114 p.
18. Markov G.T., Petrov B.M., Grudinskaya G.P. Ehlektrodinamika i rasprostranenie radiovoln. M.: Sovetskoe radio. –1979. –376 p.
19. Voevodin V.V. Vychislitel'nye osnovy lineinoi algebry. M. –1977. –304 p.
20. Biblioteka Chislennogo analiza NIVTS MGU. Podprogramma: ASP4E. Online: http://num-anal.srcc.msu.ru/lib_na/cat/as/asp4a.htm
21. Berezin I.S., Zhidkov N.P. Metody vychislenii. –1959.– V. 2.– 620 p.
22. Yee K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media// IEEE Transactions on antennas and propagation. – 1966. – V. 14. – ¹. 3. – P. 302-307.
23. Ulaby F. T., Long D.G., Blackwell, et al. Microwave radar and radiometric remote sensing. Ann Arbor: University of Michigan Press. –2014.– 984 p.
24. Vinogradova M. B., Rudenko O. V., Sukhorukov A. P. Teoriya voln. M.: Nauka. –1990.–432p.
For citation:
Muzalevskiy K.V. Using the modified method of auxiliary sources in the diffraction problem of an electromagnetic impulse on a subsurface impedance cylinder. // Journal of Radio Electronics. – 2024. – ¹. 9. https://doi.org/10.30898/1684-1719.2024.9.10 (In Russian)