ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ. ISSN 1684-1719. 2020. № 8
Оглавление выпуска

Текст статьи (pdf)

English page

 

DOI  https://doi.org/10.30898/1684-1719.2020.8.8

УДК 621.382.32

 

Статическая модель мощного кремниевого полевого транзистора  с изолированным затвором

 

В. Н. Бирюков, в. Р. Харитонова, д. А. Портных

Институт радиотехнических систем и управления Южного федерального университета, 347900, Таганрог, пер. Некрасовский, 44

 

Статья поступила в редакцию 14 июля 2020 г.

 

Аннотация. Предложена компактная модель высоковольтного кремниевого полевого транзистора с изолированным затвором для электронных симуляторов. Модель получена путем экстраполяции известной модели для ненасыщенного режима, учитывающей зависимость подвижности носителей заряда от поперечного электрического поля, в область насыщения вольт-амперных характеристик. Параметры экстраполирующей функции определяются из условия непрерывности первых двух производных подобно тому, как это осуществляется в кубической сплайн-аппроксимации. Модель имеет всего четыре параметра, что позволяет эффективно определять их методом наименьших квадратов по результатам измерения ВАХ. Приведены результаты определения параметров мощных кремниевых транзисторов. Среднеквадратическая ошибка моделирования шести транзисторов разных типов составляла от 1,7 до 13 % в максимально допустимых техническими условиями диапазонах токов и мощностей.

Ключевые слова: мощный полевой транзистор, компактная модель, метод наименьших квадратов, определение параметров.

Abstract. This paper introduces a model of high-voltage long-channel MOS field-effect transistor. The new compact model is produced from a one-dimensional Shockley model of a MOSFET by introducing the dependence of the mobility of charge carriers on the electric field of the gate. Extensions are made for improved modeling of high-voltage MOSFETs, and one new parameter is introduced to correct the unsaturated region of the known model. The current in the saturated mode of the proposed model is obtained by non-linear extrapolation of the transistor current in the unsaturated mode by Padé approximant so that the current is maintained continuous along with its two first derivatives. The model has only four parameters, which are determined by the experimental current-voltage characteristics by the least squares method. The results of an experimental verification of the modeling accuracy of several high-power n and p-channel MOSFETs are presented.

Keywords: C2-continuity, characterization, compact model, least squares, power MOSFET.

Литература

1.       Kundert K. Automatic Model Compilation – An Idea Whose Time Has Come. The Designer’s Guide. May 2002. [online]. Available at:

http://www.designers-guide.com/Opinion/modcomp.pdf

2.       Divekar D.A. FET Modeling for Circuit Simulation. New York, Kluwer. 1988.

3.       Galadi A. Power MOSFET Models Including Quasi-Saturation Effect. International Journal of Electronics and Communication Engineering. 2016. Vol.10. No.12. P.17-27. Available at: http://publications.waset.org/10005907/pdf

4.       Agarwal H. et al. BSIM-HV: High-Voltage MOSFET Model Including Quasi-Saturation and Self-Heating Effect. IEEE Trans. on Electron Dev. 2019. Vol.66. No.10. P.4258–4263. https://doi.org/10.1109/TED.2019.2933611.

5.       Wenyuan Wang et al. An Accurate and Robust Compact Model for High-Voltage MOS IC Simulation. IEEE Trans. on Electron Dev. 2013. Vol.60. No.2. P.662–669. https://doi.org/10.1109/TED.2012.2233740

6.       McAndrew C. Practical modeling for circuit simulation. IEEE J. Solid-State Circuits. 1998. Vol.33. P.439–448. https://doi.org/10.1109/4.661209.

7.       Pilipenko A.M., Biryukov V.N. Accuracy estimation of the numerical methods of the analysis of the relaxation oscillator. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2013. No.11. Available at: http://jre.cplire.ru/jre/nov13/6/text_e.pdf

8.       BSIM-BULK Technical Manual [online]. 2017. Available at: http://www.bsim.berkeley.edu/models/bsimbulk/

9.       Biryukov V. N. The effects of the transversal field dependence of carrier mobility on the validity of the gradual channel approximation in insulated gate field-effect transistors. Journal of Communications Technology and Electronics. 1974. Vol.19. No.7. P.1556–1558.

10.  Bandali M.B. The effects of the field dependence of carrier mobility on the validity of the gradual channel approximation in insulated-gate field-effect transistors. Solid-State Electronics. 1971. Vol.14. No.12. 1971. P.1325-1327. https://doi.org/10.1016/0038-1101(71)90122-5

11.  Denisenko V.V. The accuracy and validity of the simulation of VLSI MOS transistors. Russian Microelectronisc. 2009. Vol.38. No.12. P.273–278. https://doi.org/10.1134/S1063739709040064

12.  Kondo M., Onodera H., Tamaru K. Model-adaptable MOSFET parameter-extraction method using intermediate model. IEEE Trans. Computer-Aided Design. 1998. Vol.17. No 5. P.400–404. https://doi.org/10.1109/43.703924

13.  Bisdounis S., Nikolaidis O., Koufopavlou C., Goutis E. Switching response modeling of the CMOS inverter for sub-micron devices. Proceedings of the 1998 conference on Design, automation and test in Europe. P.729-737.

14.  Biryukov V.N. Template modeling of a p-channel MOSFET. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No.2. DOI https://doi.org/10.30898/1684-1719.2019.2.11.

15.  Pilipenko A.M., Biryukov V.N. Efficiency improvement of the random search algorithm for parametric identification of electronic components models. Proc. SIBCON. Tomsk.  Russia. 2016. P.5–11.

https://doi.org/10.1109/SIBCON.2016.7491703

 

Для цитирования:

Бирюков В.Н., Харитонова В.Р., Портных Д.А. Статическая модель мощного кремниевого полевого транзистора  с изолированным затвором. Журнал радиоэлектроники [электронный журнал]. 2020. №8. https://doi.org/10.30898/1684-1719.2020.8.8