Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2021. No. 8
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2021.8.10
UDC: 621.396.969
ASSESSMENT OF THE LATERAL PETALS PARAMETERS OF THE COMPRESSED SIGNAL AT THE INVERSE FILTER OUTPUT UNDER THE CONDITIONS OF UNCERTAINTY
R. G. Khafizov
Volga State Technological University Yoshkar-Ola, Russia
The paper was received June 22, 2021
Abstract. The paper presents the results of the parameters assessment of the lateral petals of the compressed signal at the inversion filter output under the conditions of uncertainty, caused by the presence of zero values in the signal spectrum when using the methods of correction and limiting the signal spectrum or frequency spectrum. Assessment of the lateral petals parameters was made according to the radio of the main peak energy to the energy of the lateral petals and the level of maximum lateral petal.
Key words: inverse filtration, lateral petals, signal compression, critical components, uncertainty elimination.
References
1. Vasilenko G.I., Taratorin A.M. Vosstanovlenie izobrazhenii [Image recovery]. Moscow, Radio i svyaz’ Publ. 1986. (In Russian)
2. Gonsales R., Woods R. Cifrovaya obrabotka izobrazhenii [Digital Image Processing]. Moscow, Tekhnosfera Publ. 2005. (In Russian)
3. Schneider M., Habets E.A.P. Iterative DFT-Domain Inverse Filter Optimization Using a Weighted Least-Squares Criterion. IEEE/ACM Transactions on Audio, Speech, and Language Processing. 2019. V.27. №12. P.1957–1969.
4. Zhang Yo. et al. Super-resolution surface mapping for scanning radar: inverse filtering based on the fast iterative adaptive approach. IEEE transactions on geoscience and remote sensing. 2018. V.56. №1. P.127–144. DOI: 10.1109/TGRS.2017.2743263.
5. Mudukutore A.S., Chandrasekar V., Keeler R.J. Pulse compression for weather radars. IEEE Transactions on Geosciences and Remote Sensing. 1998. V.36. №1. P.125–142.
6. Abramenko V.V., Vasil’chenko O.V., Semchenkov S.M., Pechenev E.A. Inverse Filtration of the Impulse Signals. Elektromagnitnie volni i elektronnie sistemi [Electromagnetic Waves and Electronic Systems]. 2017. V.4. P.42–53. (In Russian)
7. Semchenkov S.M., Pechenev E.A. Method of Increasing the Resolution due to Inverse Filtration of the Impulse Signals. Radiopromishlennost [Radio Industry]. 2017. V.3. P.103–109. (In Russian)
8. Furman Ya.A. Vvedenie v konturnii analiz i ego prilozhenie k obrabotke izobrazhenii i signalov [Introduction to the Contour Analysis and Its Applications to Image and Signal Processing]. Moscow, FIZMATLIT Publ. 2002. (In Russian)
9. Furman Ya.A., Kazarinov A.V., Gromiko D.S. Ensuring the Stability of the Inverse Filtering of the Signal by Reduction of Its Spectrum. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Seria: Radiotekhnicheskie i infokommunikacionnie sistemi [Herald of the Volga State University of Technology. Series: Radio Engineering and Info Communication Systems]. 2018. V.4. No.40. P.31–45. (In Russian)
10. Khafizov R.G. Ensuring a Resolved Image with using Inverse Signal Filtering in Conditions of Uncertainty. Cifrovaia obrabotka signalov [Digital Signal Processing]. 2020. V.1. P.50–54. (In Russian)
11. Khafizov R.G., Kazarinov A.V. Optimization of the Correction of the Critical Components of the Spectrum of the Impulse Signal to Ensure the Stability of the Inverse Filtering. Radiotekhnicheskie i infokommunikacionnie sistemi [Radio Engineering and Info Communication Systems]. 2020. Vol.2. No.38. P.24–33 (In Russian)
For citation:
Khafizov R.G. Assessment of the lateral petals parameters of the compressed signal at the inverse filter output under the conditions of uncertainty. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2021. No.8. https://doi.org/10.30898/1684-1719.2021.8.10 (In Russian)