ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ. eISSN 1684-1719. 2025. №8
Текст статьи (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.8.2
УДК: 53.083.2; 53.082.73
ЭЛЕКТРОУПРУГОСТЬ И МОДАЛЬНЫЙ АНАЛИЗ
ПЬЕЗОВОЛОКОННОГО ДИСКОВОГО FibrCD-АКТЮАТОРА
А.А. Паньков
Пермский национальный исследовательский политехнический университет,
614990, Пермь, Комсомольский пр-кт, д. 29
Статья поступила в редакцию 26 апреля 2025 г.
Аннотация. Разработана математическая электромеханическая модель пьезоволоконного катушечного дискового (FibrCD) актюатора, в котором множество витков пьезоэлектрического кабеля «жила/пьезоэлектрический слой/экранирующий электрод» скреплены между собой полимерным связующим. В кабеле пьезоэлектрический слой между жилой и внешним экранирующим электродом имеет радиальную поляризацию. Для элементарной составной цилиндрической ячейки «жила/пьезоэлектрический слой/экранирующий электрод/полимерная оболочка» получено точное аналитическое решение связанной краевой задачи электроупругости для деформационных и электрических полей. На основе этого решения получены решения для эффективных характеристик: модулей упругих свойств, пьезоэлектрических коэффициентов линейного расширения и блокирующих напряжений волоконной структуры FibrCD-актюатора; при этом продольная ось составной цилиндрической ячейки является осью симметрии ее эффективных трансверсально-изотропных электроупругих свойств. Далее, найденные эффективные свойства волоконной структуры используются при рассмотрении деформирования дискового FibrCD-актюатора как однородного диска с криволинейной цилиндрической анизотропией, когда окружная координата – ось симметрии трансверсально-изотропных свойств материала диска в рамках подхода термоаналогии. Подход применим для рассматриваемого случая, когда напряженность электрического поля от действия управляющего электрического напряжения, приложенного к выходам электродов пьезоэлектрического кабеля, существенно превышает составляющую напряженности от прямого пьезоэффекта, т.е. обусловленную деформированием диска. Осуществлен расчет коэффициентов пьезоэлектрического линейного расширения и блокирующих напряжений волоконной структуры диска по полученному аналитическому решению в сравнении с другими аналитическими и методом конечных элементов в пакете ANSYS решениями; подтверждено соответствие и приемлемая точность решений разными методами. Дополнительно, в пакете ANSYS осуществлен модальный анализ: представлены первые шесть собственных форм и частот колебаний дискового и кольцевого FibrCD-актюаторов.
Ключевые слова: пьезоэлектрический актюатор, электроупругость, волокнистый композит, эффективные свойства, полидисперсная модель, численное моделирование.
Финансирование: Работа выполнена при финансовой поддержке Пермского края и Российского научного фонда, проект № 24-21-20026.
Автор для переписки: Паньков Андрей Анатольевич, a_a_pankov@mail.ru
Литература
1. Берлинкур Д., Керран Д., Жаффе Г. Пьезоэлектрические и пьезомагнитные материалы и их применение в преобразователях. Физическая акустика. Т.1. Методы и приборы ультразвуковых исследований. Часть А. Москва, Мир. 1966. С.204-326.
2. Мэзон У. Пьезоэлектрические кристаллы и их применения в ультраакустике. Москва, Изд–во иностр. лит. 1952. 448 с.
3. Панич А.Е. Пьезокерамические актюаторы. Ростов-на-Дону, Изд–во Рост. гос. ун‑та. 2008. 160 с.
4. Паньков А.А. Пьезокомпозиты и датчики: монография в 3-х частях / Часть 3. Пьезолюминесцентные датчики, покрытия и актюаторы. Пермь, Изд–во Перм. нац. иссл. политехн. ун–та. 2024. 347 с.
5. Park J.-S., Kim J.-H. Analytical development of single crystal Macro Fiber Composite actuators for active twist rotor blades // Smart Materials and Structures. 2005. № 14. P. 745-753. https://doi.org/10.1088/0964-1726/14/4/033
6. Ватульян А.О., Кирютенко А.Ю., Наседкин А.В. Плоские волны и фундаментальные решения в линейной термоэлектроупругости // Прикладная механика и техническая физика. 1996. Т. 37. № 5. С. 135-142. https://doi.org/10.1007/BF02369312
7. Шляхин Д.А. Нестационарная осесимметричная задача электроупругости для анизотропного пьезокерамического радиально поляризованного цилиндра // Известия Российской академии наук. Механика твердого тела. 2009. № 1. С. 73-81. https://doi.org/10.3103/S0025654409010063
8. He T., Tian X., Shen Y. A generalized electromagneto-thermoelastic problem foran infinitely long solid cylinder // European Journal of Mechanics – A/Solids. 2005. V. 24. № 2. P. 349-359. https://doi.org/10.1016/j.euromechsol.2004.12.001
9. Ватульян А.О., Нестеров С.А. Динамическая задача термоэлектроупругости для функционально-градиентного слоя // Вычислительная механика сплошных сред. 2017. Т. 10. № 2. C. 117-126. https://doi.org/10.7242/1999-6691/2017.10.2.10
10. Шляхин Д.А., Кальмова М.А. Связанная нестационарная задача термоэлектроупругости для длинного полого цилиндра // Вестник Самарского государственного технического университета. Сер. Физ.-мат. науки. 2020. Т. 24. № 4. С. 677-691. https://doi.org/10.14498/vsgtu1781
11. Белоконь А.В., Скалиух А.С. Математическое моделирование необратимых процессов поляризации. Москва, Изд–во Физматлит. 2010. 328 с.
12. Nasedkin A.V., Nasedkina A.A., Nassar M.E. Homogenization of porous piezocomposites with extreme properties at pore boundaries by effective moduli method // Mechanics of Solids. 2020. V. 55. P 827-836. https://doi.org/10.3103/S0025654420050131
13. Emad D, Fanni M.A, Mohamed A.M, Yoshida S. Low-Computational-Cost Technique for Modeling Macro Fiber Composite Piezoelectric Actuators Using Finite Element Method // Materials (Basel). 2021. № 14(15). P. 4316. https://doi.org/10.3390/ma14154316
14. Паньков А.А., Писарев П.В. Численное моделирование в ANSYS электроупругих полей в пьезоэлектролюминесцентном оптоволоконном датчике диагностирования объемного деформированного состояния композита. Вестник Пермского национа́льного исследовательского политехнического университета // Механика. 2017. № 3. С. 153-166. https://doi.org/10.15593/perm.mech/2017.3.09
15. Патент RU № 2827058. Паньков А.А. Пьезоэлектрический актюатор. Дата заявки: 30.01.2024. Дата публикации: 23.09.2024. 7 с. URL: https://patenton.ru/patent/RU2827058C1.pdf
16. Патент RU № 2832857. Паньков А.А. Пьезоэлектрический актюатор. Дата заявки: 05.08.2024. Дата публикации: 09.01.2025. 8 с. URL: https://i.moscow/patents/ru2832857c1_20250109
17. Patent US № 4629925. Booth M., Penneck R.J. Piezoelectric coaxial cable. Application Date: 20.11.1984. Publication Date: 16.12.1986. 8 p. URL: https://patents.google.com/patent/US4629925A/en
18. Patent US № 4609845. Soni P.L., Farrar N.R. Stretched piezoeleci‘ric polymer coaxial cable. Application Date: 06.07.1984. Publication Date: 02.09.1986. 7 p. URL: https://insight.rpxcorp.com/patent/US4609845A
19. Победря Б.Е. Механика композиционных материалов. Москва, Изд–во Моск. ун–та. 1984. 336 c.
20. Гетман И.П., Мольков В.А. Об эффективных характеристиках пьезоактивных композитов с цилиндрическими включениями // Прикладная математика и механика. 1992. Т. 35. № 3. С. 501-509.
21. Паньков А.А. Пьезокомпозиты и датчики: монография в 3-х частях / Часть 1. Статистическая механика пьезокомпозитов. Пермь, Изд–во Перм. нац. иссл. политехн. ун–та. 2022. 234 с.
22. Кристенсен Р. Введение в механику композитов. Москва, Изд–во Мир. 1982. 334 с.
23. Dong X.-J., Meng G. Dynamic analysis of structures with piezoelectric actuators based on thermal analogy method // International Journal of Advanced Manufacturing Technology. 2006. V. 27. P. 841-844. https://doi.org/10.1007/s00170-004-2290-5
Для цитирования:
Паньков А.А. Электроупругость и модальный анализ пьезоволоконного дискового FibrCD-актюатора // Журнал радиоэлектроники. – 2025. – №. 8. https://doi.org/10.30898/1684-1719.2025.8.2