Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹8

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.8.2

 

 

Electroelasticity and modal analysis

of piezofibre disc FibrCD-actuator

 

A.A. Pan’kov

 

Perm National Research Polytechnic University,
614990, Perm, Komsomolsky ave.,29

 

The paper was received April 26, 2025.

 

Abstract. A mathematical electromechanical model of a piezofibre coil disk (FibrCD) actuator has been developed, in which a plurality of turns of a piezoelectric cable «core/piezoelectric layer/shielding electrode» are attached to each other with a polymer binder. In the cable, the piezoelectric layer between the core and the outer shield electrode is radially polarized. For an elementary composite cylindrical cell «core/piezoelectric layer/shielding electrode/polymer shell» an exact analytical solution of the coupled boundary value problem of electroelasticity for deformation and electric fields is obtained. Based on this solution, solutions were obtained for effective characteristics: elastic moduli, piezoelectric coefficients of linear expansion and blocking voltages of the fiber structure of the FibrCD actuator; Note here that composite cylindrical cell lengthwise axis makes the axis of symmetry of its efficient transversal-isotropic electroelastic properties. Further, the found effective properties of the fiber structure are used when considering the deformation of the FibrCD disk actuator as a uniform disk with curvilinear cylindrical anisotropy, when the circumferential coordinate is the axis of symmetry of the transversal-isotropic properties of the disk material based on thermal analogy method. The thermal analogy method is applicable to the case in which the electric field strength due to the control voltage applied to the electrode outputs of the piezoelectric cable significantly exceeds the corresponding direct piezoeffect component due to disc deformation. The coefficients of piezoelectric linear expansion and blocking stresses of the fiber structure of the disk were calculated according to the obtained analytical solution in comparison with other analytical and finite element methods in the ANSYS package; conformity and acceptable accuracy of solutions by different methods are confirmed. Additionally, a modal analysis was performed in the ANSYS package: the first six eigenforms and frequencies of oscillations of the disk and ring FibrCD actuators are presented.

Key words: piezoelectric actuator, electroelasticity, fibrous composite, effective properties, polydisperse model, numerical modeling.

Financing: The study was funded by Perm krai and the Russian Science Foundation (project no. 24-21-20026).

Corresponding author: Pan'kov Andrei Anatol'evich, a_a_pankov@mail.ru

 

References

 

1. Berlinkur D., Kerran D., ZHaffe G. P'ezoelektricheskie i p'ezomagnitnye materialy i ih primenenie v preobrazovatelyah. Fizicheskaya akustika. T. 1. Metody i pribory ul'trazvukovyh issledovanij. CHast' A [Piezoelectric and piezomagnetic materials and their application in transducers. Physical acoustics. V. 1. Ultrasound Methods and Instruments]. Moscow, Mir Publ. 1966. P. 204-326. (in Russian).

2. Mezon U. P'ezoelektricheskie kristally i ih primeneniya v ul'traakustike [Piezoelectric crystals and their applications in ultraacoustics]. Moscow, Inostr. lit. Publ. 1952. 448 p. (in Russian).

3. Panich A.E. P'ezokeramicheskie aktyuatory [Piezoceramic actuators]. Rostov-na-Donu, Rost. gos. un–t Publ. 2008. 160 p. (in Russian).

4. Pan'kov A.A. P'ezokompozity i datchiki: monografiya v 3-h chastyah / Chast' 3. P'ezolyuminescentnye datchiki, pokrytiya i aktyuatory [Piezocomposites and sensors: monograph in 3 parts / Part 3. Piezoluminescent sensors, coatings and actuators]. Perm', Perm. nac. issl. politekhn. un–t Publ. 2024. 347 p. (in Russian).

5. Park J.-S., Kim J.-H. Analytical development of single crystal Macro Fiber Composite actuators for active twist rotor blades. Smart Materials and Structures. 2005. ¹ 14. P. 745-753. https://doi.org/10.1088/0964-1726/14/4/033

6. Vatul'yan A.O., Kiryutenko A.Yu., Nasedkin A.V. Ploskie volny i fundamental'nye resheniya v linejnoj termoelektrouprugosti [Plane waves and fundamental solutions in linear thermoelectroelasticity]. Prikladnaya mekhanika i tekhnicheskaya fizika. 1996. V. 37. ¹ 5. P. 135-142. https://doi.org/10.1007/BF02369312 (in Russian).

7. Shlyahin D.A. Nestacionarnaya osesimmetrichnaya zadacha elektrouprugosti dlya anizotropnogo p'ezokeramicheskogo radial'no polyarizovannogo cilindra [Non-stationary axisymmetric electroelasticity problem for an anisotropic piezoceramic radially polarized cylinder]. Izvestiya Rossijskoj akademii nauk. Mekhanika tverdogo tela. 2009. ¹ 1. P. 73-81. https://doi.org/10.3103/S0025654409010063 (in Russian).

8. He T., Tian X., Shen Y. A generalized electromagneto-thermoelastic problem foran infinitely long solid cylinder. European Journal of Mechanics – A/Solids. 2005. V. 24. ¹ 2. P. 349-359. https://doi.org/10.1016/j.euromechsol.2004.12.001

9. Vatul'yan A.O., Nesterov S.A. Dinamicheskaya zadacha termoelektrouprugostidlya funkcional'no-gradientnogo sloya [Dynamic problem of thermoelectroelastic stability of functional-gradient layer]. Vychislitel'naya mekhanika sploshnyh sred. 2017. V. 10. ¹ 2. P. 117-126. https://doi.org/10.7242/1999-6691/2017.10.2.10 (in Russian).

10. Shlyahin D.A., Kal'mova M.A. Svyazannaya nestacionarnaya zadacha termoelektrouprugosti dlya dlinnogo pologo cilindra [Coupled transient thermoelectroelasticity problem for a long hollow cylinder]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Ser. Fiz.-mat. nauki. 2020. V. 24. ¹ 4. P. 677-691. https://doi.org/10.14498/vsgtu1781 (in Russian).

11. Belokon' A.V., Skaliuh A.S. Matematicheskoe modelirovanie neobratimyh processov polyarizacii [Mathematical modeling of irreversible polarization processes]. Moscow, Fizmatlit Publ. 2010. 328 p. (in Russian).

12. Nasedkin A.V., Nasedkina A.A., Nassar M.E. Homogenization of porous piezocomposites with extreme properties at pore boundaries by effective moduli method. Mechanics of Solids. 2020. V. 55. P 827-836. https://doi.org/10.3103/S0025654420050131

13. Emad D, Fanni MA, Mohamed AM, Yoshida S. Low-Computational-Cost Technique for Modeling Macro Fiber Composite Piezoelectric Actuators Using Finite Element Method. Materials (Basel). 2021. ¹ 14(15). P. 4316.

14. Pan'kov A.A., Pisarev P.V. Chislennoe modelirovanie v ANSYS elektrouprugih polej v p'ezoelektrolyuminescentnom optovolokonnom datchike diagnostirovaniya ob»emnogo deformirovannogo sostoyaniya kompozita [Numerical modeling in ANSYS of electroelastic fields in a piezo-electroluminescent fiber optic sensor for diagnosing the volumetric deformed state of the composite]. Vestnik Permskogo nacionál'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika. 2017. ¹ 3. P. 153-166. https://doi.org/10.15593/perm.mech/2017.3.09 (in Russian).

15. Patent RU ¹ 2827058. Pan'kov A.A. P'ezoelektricheskij aktyuator [Piezoelectric actuator]. Application Date: 30.01.2024. Publication Date: 23.09.2024. 7 p. URL: https://patenton.ru/patent/RU2827058C1.pdf (in Russian).

16. Patent RU ¹ 2832857. Pan'kov A.A. P'ezoelektricheskij aktyuator [Piezoelectric actuator]. Application Date: 05.08.2024. Publication Date: 09.01.2025. 8 p. URL: https://i.moscow/patents/ru2832857c1_20250109 (in Russian).

17. Patent US ¹ 4629925. Booth M., Penneck R.J. Piezoelectric coaxial cable. Application Date: 20.11.1984. Publication Date: 16.12.1986. 8 p. URL: https://patents.google.com/patent/US4629925A/en

18. Patent US ¹ 4609845. Soni P.L., Farrar N.R. Stretched piezoeleci‘ric polymer coaxial cable. Application Date: 06.07.1984. Publication Date: 02.09.1986. 7 p. URL: https://insight.rpxcorp.com/patent/US4609845A

19. Pobedrya B.E. Mekhanika kompozicionnyh materialov [Mechanics of composite materials]. Moskva, Izd–vo Mosk. un–ta. 1984. 336 p. (in Russian).

20. Getman I.P., Mol'kov V.A. Ob effektivnyh harakteristikah p'ezoaktivnyh kompozitov s cilindricheskimi vklyucheniyami [On the effective characteristics of piezoactive composites with cylindrical inclusions]. Prikladnaya matematika i mekhanika. 1992. V. 35. ¹ 3. P. 501-509. (in Russian).

21. Pan'kov A.A. P'ezokompozity i datchiki: monografiya v 3-h chastyah / Chast' 1. Statisticheskaya mekhanika p'ezokompozitov [Piezocomposites and sensors: monograph in 3 parts / Part 1. Statistical mechanics of piezocomposites]. Perm', Perm. nac. issl. politekhn. un–t Publ. 2022. 234 p. (in Russian).

22. Kristensen R. Vvedenie v mekhaniku kompozitov [Introduction to composites mechanics]. Moscow, Mir Publ. 1982. 334 p. (in Russian).

23. Dong X.-J., Meng G. Dynamic analysis of structures with piezoelectric actuators based on thermal analogy method. International Journal of Advanced Manufacturing Technology. 2006. V. 27. P. 841-844. https://doi.org/10.1007/s00170-004-2290-5

For citation:

Pan’kov A.A. Electroelasticity and modal analysis of piezofibre disc FibrCD-actuator // Journal of Radio Electronics. – 2025. – ¹. 8. https://doi.org/10.30898/1684-1719.2025.8.2 (In Russian)