Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹8

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.8.3

 

 

 

Sub-nyquist tensor completion

for massive mimo Channel estimation:
PART 1

 

S.V. Dorokhin, D.V. Shuvalov, V.A. Lyashev

 

Moscow Institute of Physics and Technology,

9 Institutskiy per., Dolgoprudniy, Moscow Region, 141700, Russia

 

The paper was received May 2, 2025.

 

Abstract. Current trend of Massive MIMO development is the increase in size of antenna arrays, bandwidth and number of subcarriers. If conventional channel estimation methods are used, channel estimation overhead scales as well. At the same time the Nyquist limit makes overhead reduction impossible for classical methods. To overcome this limitation, we propose a new channel estimation approach. The proposed method consists of measuring the channel tensor elements in crossing slabs and further completing the measured tensor. Extending a known Canonical Polyadic Decomposition Slab Sampled Completion algorithm to Tucker and Tensor Train models, we reduce the normalized mean error from 0.22 to below 0.1. To further increase the accuracy, we propose the interleave the positions of slabs using permutation polynomial. Simulation results based on 3GPP 38.901 channel model demonstrate that the interleaving can reduce the Tucker completion NME up to 10 times. At the same time, replacing Tucker model by Tensor Train allows to greatly reduce the impact of slabs positions. For TT-based completion the difference between completion NME for regular (periodic) slabs and interleaved slabs is below 20 %. The proposed algorithms break the Nyquist limit and have good chances to provide significant overhead reduction. Next part of our work will be focused on the implementation issues and the provided overhead reduction.

Key words: MIMO, OFDM, channel estimation, tensor completion, cross-tensor approximation.

Corresponding author: Dorokhin Semyon Vladimirovich, dorohin.sv@phystech.edu

 

References

1. Yu J. et al. Field Test of 5G FDD Massive MIMO // 2022 5th International Conference on Information Communication and Signal Processing (ICICSP). – IEEE, 2022. – Ñ. 355-359

2. Wang C.X. et al. On the road to 6G: Visions, requirements, key technologies, and testbeds // IEEE Communications Surveys & Tutorials. – 2023. – Ò. 25. – ¹. 2. – Ñ. 905-974.

3. Lin X. The bridge toward 6G: 5G-Advanced evolution in 3GPP Release I9 // IEEE Communications Standards Magazine. – 2025. – Ò. 9. – ¹. 1. – Ñ. 28-35.

4. Alhamed A., Gültepe G., Rebeiz G.M. 64-element 16–52-GHz transmit and receive phased arrays for multiband 5G-NR FR2 operation // IEEE Transactions on Microwave Theory and Techniques. – 2022. – Ò. 71. – ¹. 1. – Ñ. 360-372.

5. Dorokhin S.V., Shuvalov D.V., Makurin M.N., Lyashev V.A., Oseledets I.V. Reference signals based on permutation polynomials for tensor completion of MIMO OFDM channel // T-Comm -- Telecommunications and Transport. – 2025. – ¹19. – Ñ. 4-27.

6. Zhou Z. et al. Channel estimation for millimeter-wave multiuser MIMO systems via PARAFAC decomposition // IEEE Transactions on Wireless Communications. – 2016. – Ò. 15. – ¹. 11. – Ñ. 7501-7516.

7. Zhou Z. et al. Low-rank tensor decomposition-aided channel estimation for millimeter wave MIMO-OFDM systems // IEEE Journal on Selected Areas in Communications. – 2017. – Ò. 35. – ¹. 7. – Ñ. 1524-1538.

8. Lin Y. et al. Tensor-based channel estimation for millimeter wave MIMO-OFDM with dual-wideband effects // IEEE Transactions on Communications. – 2020. – Ò. 68. – ¹. 7. – Ñ. 4218-4232.

9. Ruble M., Güvenç İ. Multilinear singular value decomposition for millimeter wave channel parameter estimation // IEEE Access. – 2020. – Ò. 8. – Ñ. 75592-75606.

10. Gong X. et al. An ESPRIT-based supervised channel estimation method using tensor train decomposition for mmWave 3-D MIMO-OFDM systems // IEEE Transactions on Signal Processing. – 2023. – Ò. 71. – Ñ. 555-570.

11. Dorokhin S., Lyashev V., Makurin M. 6G XL-MIMO Channel Estimation with Sub-Nyquist Tensor Completion // 2025 27th International Conference on Digital Signal Processing and its Applications (DSPA). – IEEE, 2025. – Ñ. 1-6.

12. Goreinov S.A., Tyrtyshnikov E.E., Zamarashkin N.L. A theory of pseudoskeleton approximations // Linear algebra and its applications. – 1997. – Ò. 261. – ¹. 1-3. – Ñ. 1-21.

13. Tyrtyshnikov E. Incomplete cross approximation in the mosaic-skeleton method // Computing. – 2000. – Ò. 64. – ¹. 4. – Ñ. 367-380.

14. Goreinov S.A., Tyrtyshnikov E.E. Quasioptimality of skeleton approximation of a matrix in the Chebyshev norm // Doklady Mathematics. – Dordrecht : SP MAIK Nauka/Interperiodica, 2011. – Ò. 83. – ¹. 3. – Ñ. 374-375.

15. Osinsky A.I., Zamarashkin N.L. Pseudo-skeleton approximations with better accuracy estimates // Linear Algebra and its Applications. – 2018. – Ò. 537. – Ñ. 221-249.

16. Zhu X., Lin W. Randomised pseudo-skeleton approximation and its application in electromagnetics // Electronics Letters. – 2011. – Ò. 47. – ¹. 10. – Ñ. 590-592.

17. Cai H.Q. et al. Robust CUR decomposition: Theory and imaging applications // SIAM Journal on Imaging Sciences. – 2021. – Ò. 14. – ¹. 4. – Ñ. 1472-1503.

18. Du K.L. et al. Matrix factorization techniques in machine learning, signal processing, and statistics // Mathematics. – 2023. – Ò. 11. – ¹. 12. – Ñ. 2674.

19. Flynn M. et al. Stat: Shrinking transformers after training // arXiv preprint arXiv:2406.00061. – 2024.

20. Goreinov S.A. et al. How to find a good submatrix // Matrix Methods: Theory, Algorithms And Applications: Dedicated to the Memory of Gene Golub. – 2010. – Ñ. 247-256.

21. Sorber L., Van Barel M., De Lathauwer L. Optimization-based algorithms for tensor decompositions: Canonical polyadic decomposition, decomposition in rank-(L_r,L_r,1) terms, and a new generalization // SIAM Journal on Optimization. – 2013. – Ò. 23. – ¹. 2. – Ñ. 695-720.

22. Kanatsoulis C.I. et al. Tensor completion from regular sub-Nyquist samples // IEEE Transactions on Signal Processing. – 2019. – Ò. 68. – Ñ. 1-16.

23. Vandecappelle M., Vervliet N., De Lathauwer L. A second-order method for fitting the canonical polyadic decomposition with non-least-squares cost // IEEE Transactions on Signal Processing. – 2020. – Ò. 68. – Ñ. 4454-4465.

24. De Lathauwer L., De Moor B., Vandewalle J. A multilinear singular value decomposition // SIAM journal on Matrix Analysis and Applications. – 2000. – Ò. 21. – ¹. 4. – Ñ. 1253-1278.

25. Oseledets I.V. Tensor-train decomposition // SIAM Journal on Scientific Computing. – 2011. – Ò. 33. – ¹. 5. – Ñ. 2295-2317.

26. Äîðîõèí Ñ.Â., Ëÿøåâ Â.À. ÂÎÑÑÒÀÍÎÂËÅÍÈÅ ÒÅÍÇÎÐΠÏÐÈ ÑÒÐÓÊÒÓÐÍÛÕ ÎÃÐÀÍÈ×ÅÍÈßÕ ÍÀ ÎÏÅÐÀÒÎÐ ÈÇÌÅÐÅÍÈÉ // ÁÁÊ 22.18 Ë75. – 2023. – Ò. 4. – Ñ. 121. [Dorokhin S.V., Lyashev V.A. Tensor Completion with structural constraints on the measurement operator]

27. De Lathauwer L., De Moor B., Vandewalle J. A multilinear singular value decomposition // SIAM journal on Matrix Analysis and Applications. – 2000. – Ò. 21. – ¹. 4. – Ñ. 1253-1278.

28. Welch L.R. Lower bounds on the maximum cross correlation os signals // IEEE Trans. Inf. Theory. – 1967. – Ò. 13. – Ñ. 619-621.

29. Foucart S. Flavors of compressive sensing // International Conference Approximation Theory. – Cham : Springer International Publishing, 2016. – Ñ. 61-104.

30. Sustik M.A. et al. On the existence of equiangular tight frames // Linear Algebra and its applications. – 2007. – Ò. 426. – ¹. 2-3. – Ñ. 619-635.

31. Haupt J., Applebaum L., Nowak R. On the restricted isometry of deterministically subsampled Fourier matrices // 2010 44th Annual Conference on Information Sciences and Systems (CISS). – IEEE, 2010. – Ñ. 1-6.

32. Korobov N.M. Exponential sums and their applications. – Springer Science & Business Media, 2013. – Ò. 80.

33. da Silva F.B. Discrepancy-Based Analysis of Measurement Sampling Points in Compressive Sensing : äèñ. – The University of Texas at El Paso, 2021.

34. Jarali V., Poojary P., Bhatta V.G.R. Construction of Permutation Polynomials Using Additive and Multiplicative Characters // Symmetry. – 2022. – Ò. 14. – ¹. 8. – Ñ. 1539.

35. Kashin B., Tzafriri L. Some remarks on the restrictions of operators to coordinate subspaces // preprint. – 1993. – Ò. 6. – ¹. 9. – Ñ. 38.

36. Rudelson M. Almost orthogonal submatrices of an orthogonal matrix // Israel Journal of Mathematics. – 1999. – Ò. 111. – ¹. 1. – Ñ. 143-155.

37. Tropp J.A. Column subset selection, matrix factorization, and eigenvalue optimization // Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms. – Society for Industrial and Applied Mathematics, 2009. – Ñ. 978-986.

38. Civril A., Magdon-Ismail M. On selecting a maximum volume sub-matrix of a matrix and related problems // Theoretical Computer Science. – 2009. – Ò. 410. – ¹. 47-49. – Ñ. 4801-4811.

39. Akchen Y.C., Mišić V.V. Column-randomized linear programs: Performance guarantees and applications // Operations Research. – 2025. – Ò. 73. – ¹. 3. – Ñ. 1366-1383.

40. Jaeckel S. et al. QuaDRiGa: A 3-D multi-cell channel model with time evolution for enabling virtual field trials // IEEE transactions on antennas and propagation. – 2014. – Ò. 62. – ¹. 6. – Ñ. 3242-3256.

41. Tensorlab | A Matlab package for computations // URL: https://www.tensorlab.net/ (accessed 15.07.2025).

 

For citation:

Dorokhin S.V., Shuvalov D.V., Lyashev V.A. Sub-Nyquist tensor completion for massive MIMO channel estimation: Part 1 // Journal of Radio Electronics. – 2025. – ¹. 8. https://doi.org/10.30898/1684-1719.2025.8.3 (In Russian)