Journal of Radio Electronics. eISSN 1684-1719. 2023. ¹12
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2023.12.1
BIFURCATION ANALYSIS OF THE STRUCTURE
OF COMPLETE SYNCHRONIZATION OF THE SYSTEM
OF NON-IDENTICAL JOSEPHSON JUNCTIONS
A.P. Kuznetsov, I.R. Sataev
Kotelnikov IRE RAS, Saratov Branch
410019, Russia, Saratov, Zelenaya str., 38
The paper was received November 28, 2023.
Abstract. The structure of the region of complete synchronization of a system of three connected Josephson junctions, non-identical in critical currents, was studied by the method of bifurcation analysis. On the plane of non-identity parameters, lines of saddle-node bifurcations, Neumark-Sacker bifurcations and period doublings were found, corresponding to a typical synchronization region. The influence of symmetry on the structure of the region of complete synchronization has been studied. In the system, under certain conditions, pitchfork bifurcation and associated bistability are possible. Bogdanov-Takens points, cusp points and fold-flip points are also indicated. The accumulation of points of the latter type is discussed based on cycles of doubling periods near the boundary of the synchronization and chaos regions.
Key words: Josephson junction, phase, bifurcations.
Financing: The research was carried out within the state assignment FFWZ-2022-0001
Corresponding author: Sataev Igor Rustamovich, sataevir@gmail.com
References
1. Vlasov V., Pikovsky A. Synchronization of a Josephson junction array in terms of global variables //Physical Review E. – 2013. – Ò. 88. – ¹. 2. – Ñ. 022908.
2. Neumann E., Pikovsky A. Slow-fast dynamics in Josephson junctions //The European Physical Journal B-Condensed Matter and Complex Systems. – 2003. – Ò. 34. – Ñ. 293-303.
3. Watanabe S., Strogatz S. H. Constants of motion for superconducting Josephson arrays //Physica D: Nonlinear Phenomena. – 1994. – Ò. 74. – ¹. 3-4. – Ñ. 197-253.
4. Wiesenfeld K., Colet P., Strogatz S. H. Frequency locking in Josephson arrays: Connection with the Kuramoto model //Physical Review E. – 1998. – Ò. 57. – ¹. 2. – Ñ. 1563.
5. Wiesenfeld K., Swift J. W. Averaged equations for Josephson junction series arrays //Physical Review E. – 1995. – Ò. 51. – ¹. 2. – Ñ. 1020.
6. Valkering T. P., Hooijer C. L. A., Kroon M. F. Dynamics of two capacitively coupled Josephson junctions in the overdamped limit //Physica D: Nonlinear Phenomena. – 2000. – Ò. 135. – ¹. 1-2. – Ñ. 137-153.
7. Abdullaev F. K. et al. Phase-locked states in the system of two capacitively coupled Josephson junctions //Physical Review B. – 2000. – Ò. 62. – ¹. 10. – Ñ. 6766.
8. Kurt E., Canturk M. Chaotic dynamics of resistively coupled DC-driven distinct Josephson junctions and the effects of circuit parameters //Physica D: Nonlinear Phenomena. – 2009. – Ò. 238. – ¹. 22. – Ñ. 2229-2237.
9. Kurt E., Canturk M. Bifurcations and Hyperchaos from a DC Driven Nonidentical Josephson Junction System //International Journal of Bifurcation and Chaos. – 2010. – Ò. 20. – ¹. 11. – Ñ. 3725-3740.
10. Kuznetsov A. P., Sataev I. R., Sedova Y. V. Dynamics of three and four non-identical Josephson junctions //Journal of Applied Nonlinear Dynamics. – 2018. – Ò. 7. – ¹. 1. – Ñ. 105-110.
11. Kuznetsov A. P., Sataev I. R., Sedova YU. V. Analiz trekh neidentichnyz kontaktov Dzhozefsona metodom kart lyapunovskikh pokazatelei //Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Fizika. – 2023. – V. 23. – No 1. – P. 4-13 (in Russian).
12. Guckenheimer J., Holmes P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. – Springer Science & Business Media, 2013, 459 p.
13. Kuznetsov Yu. A., Meijer H.G.E. Numerical bifurcation analysis of maps: from theory to software. United Kingdom: Cambridge University Press. – 2019, 420 p.
14. Balanov A. et al. Synchronization. From simple to complex. – Springer, 2009, 425 p.
15. Kuznetsov S. P. Dinamicheskii khaos. Moskva: Fizmatlit. 2nd edition .– 2006, 356 p. (in Russian).
16. Kuznetsov A. P., Kuznetsov S. P., Sataev I. R. A variety of period-doubling universality classes in multi-parameter analysis of transition to chaos //Physica D: Nonlinear Phenomena. – 1997. – V. 109. – No 1-2. – P. 91-112.
17. Kuznetsov A. P. et al. Kriticheskaya tochka nakopleniya fold-flip bifurkatsii i kriticheskii kvaziattraktor (obzor i novye rezul'taty) //Russian Journal of Nonlinear Dynamics. – 2008. – V. 4. – No 2. – P. 113-132 (in Russian).
18. Baesens C. et al. Three coupled oscillators: mode-locking, global bifurcations and toroidal chaos //Physica D: Nonlinear Phenomena. – 1991. – V. 49. – No 3. – P. 387-475.
19. Inaba N. et al. Numerical and experimental observation of Arnol’d resonance webs in an electrical circuit //Physica D: Nonlinear Phenomena. – 2015. – V. 311. – P. 17-24.
20. Emelianova Y. P. et al. A structure of the oscillation frequencies parameter space for the system of dissipatively coupled oscillators //Communications in Nonlinear Science and Numerical Simulation. – 2014. – V. 19. – No 4. – P. 1203-1212.
For citation:
Kuznetsov A.P., Sataev I.R. Bifurcation analysis of the structure of complete synchronization of the system of non-identical Josephson junctions. // Journal of Radio Electronics. – 2023. – ¹. 12. https://doi.org/10.30898/1684-1719.2023.12.1 (In Russian)