Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1689-1719. 2020. No. 7
Contents

Full text in Russian (pdf)

Russian page

 

DOI  https://doi.org/10.30898/1684-1719.2020.7.5

UDC 537.874; 537.624

 

ON THE QUESTION ABOUT THE LIMITATION OF WAVE NUMBER IN DAMON-ESHBACH TASK WITH EXCHANGE AND DEMAGNETIZATION

 

V. I. Shcheglov

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Mokhovaya 11-7, Moscow 125009, Russia

 

The paper is received on June 16, 2020

 

Abstract. The influence of nonuniform exchange interaction and demagnetization field on the limitation of wave number in the Damon-Eshbach task about the propagation of magnetostatic surface wave in tangentially magnetized plane ferrite plate having dissipation is investigated. It is found that in the case when the wave number is increased in large degree, the wave frequency approaches to the upper boundary of its spectrum. In this case the wave group velocity approaches zero and the wave on the distance of its length dissipate, and its propagation becomes impossible. This dissipation manifests itself restriction of dispersion law by wave number. It is shown that introduction the exchange interaction and demagnetization in classic Damon-Eshbach task leads to the quadratic increase of upper boundary of wave spectrum. In this case the a-periodic character of wave is not take place and the limitation by wave number is absent. We found the dispersion relation, group velocity and time which is necessary for wave propagation on  a distance equal to its own length. The relaxation time is found from the solution of auxiliary task about the excitation of uniform magnetic vibrations in normal magnetized plate. The obtained relaxation time is compared with the wave’s own travel time when the remaining parameters of the main and auxiliary problems coincide. It is shown that the necessary condition of wave propagation is the less value of own running time in comparison with relaxation time. We investigated the own running time of wave when the frequency and field are varied. It is shown that in frequency interval from 2 to 7 GHz for the material like yttrium-iron garnet the own running time and the character of its dependence on wave number does not depend on frequency and corresponding field. We investigated the dependence of relaxation time on frequency in the region from 2 to 100 GHz. It is shown that up to the frequency about 10 GHz the relaxation time is decreased according to a law close to inverse proportionality, then it has a minimum near the frequency 30 GHz, then it increases smoothly to the frequency 100 GHz. It is shown that in the region of minimum the own running time may be less than the relaxation time and as a result the limitation along wave number is absent. The influence of plate thickness on the limitation of wave number is investigated. It is shown that the decrease of plate thickness leads both to large broadening of frequency range and to the complete removal of the limitation of the wave number. It is shown that this removal of the limitation for yttrium-iron garnet takes place by the thickness less to 2-3 micrometers and for other ferrites - by the thickness about 1 micrometer and less. Some recommendations are proposed for using described phenomena in practice. It is noted that to remove the limitation, a plate of small thickness should be selected from a material with small dissipation.

Key words: magnetostatic wave, wave number, exchange interaction, dissipation.

References

1. Lisovsky F.V. Fizika tsilindricheskikh magnitnykh domenov [Physics of bubble magnetic domains]. Moscow. Sovetskoye Radio Publ. 1979. (In Russian)

2. Malozemoff A.P., Slonczewski J.C. Magnetic domain walls in bubble materials. Academic Press. New York London Toronto Sydney San Francisco. 1979.

3. LeCraw R.C., Comstock R.L. Magnetoelastic interactions in ferromagnetic dielectrics. In: Mason J.P., editor. Physical acoustics. Vol. III. Part B. Lattice Dynamics. New York, London. Academic Press. 1965. P.156-243.

4. Gurevich A., Melkov G. Magnitnie kolebania i volny [Magnetic oscillations and waves]. Moscow, “Nauka-Fizmatlit” Publ. 1994. (In Russian)

5. Adam J.D. Analog signal processing with microwave magnetic. Proc. IEEE. 1988. Vol.76. No.2. P.159.

6. Ishak W.S. Magnetostatic wave technology: a review. Proc. IEEE. 1988. Vol.76. No.2. P.171.

7. Beaurepaire E., Merle J.C., Daunois A., Bigot J.Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 1996. Vol.76. No.22. P.4250-4253.

8. Kirilyuk A., Kimel A.V., Rasing T. Ultrafast optical manipulation of magnetic order.  Rev. Mod. Phys. 2010. Vol.82. No.3. P.2731-2784.

9. Walowski J., Münzenberg M. Perspective: Ultrafast magnetism and THz spintronics.  Journ. Appl. Phys. 2016. Vol.120. No.14. P.140901(16).

10. Bigot J.V., Vomir M. Ultrafast magnetization dynamics of nanostructures. Ann. Phys. (Berlin). 2013. Vol.525. No.1-2. P.2-30.

11. Ka Shen, Bauer G.E.W. Laser-induced spatiotemporal dynamics of magnetic films.  Phys. Rev. Lett. 2015. Vol.115. No.19. P.197201(5).

12. Chernov A.I., Kozhaev M.A., Vetoshko P.M., Zvezdin A.K., Belotelov V.I., Dodonov D.V., Prokopov A.R., Shumilov A.G., Shaposhnikov A.N., Berzhanskii V.N. Local probing of magnetic films by optical excitation of magnetostatic waves.  Physics of the Solid State. 2016. Vol.58. No.6. P.1128.

13. Dreher L., Weiler M., Pernpeintner M., Huebl H., Gross R., Brandt M.S., Goennenwein S.T.B. Surface acoustic wave driven ferromagnetic resonance in nickel thin films: theory and experiment. Phys. Rev. B. 2012. Vol.86. No.13. P.134415(13).

14. Thevenard L., Gourdon C., Prieur J.Y., Von Bardeleben H.J., Vincent S., Becerra L., Largeau L., Duquesne J.Y. Surface-acoustic-wave-driven ferromagnetic resonance in (Ga,Mn)(As,P) epilayers. Phys. Rev. B. 2014. Vol.90. No.9. P.094401(8).

15. Chang C.L., Tamming R.R., Broomhall T.J., Janusonis J., Fry P.W., Tobey R.I., Hayward T.J. Selective excitation of localized spin-wave modes by optically pumped surface acoustic waves. Phys. Rev. Applied. 2018. Vol.10. No.3. P.034068(8).

16. Serga A.A., Chumak A.V., Hillebrands B. YIG magnonics. J. Phys. D: Appl. Phys. 2010. Vol.43. P.264002(16).

17. Kruglyak V.V., Demokritov S.O., Grundler D. Magnonics. J. Phys. D: Appl. Phys. 2010. Vol.43. ¹26. P.264001(14).

18. Slonczewski J.C. Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials. 1996. Vol.159. No.1. P.L1-L7.

19. Berger L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B. 1996. Vol.54. No.13. P.9353-9358.

20. Gulyaev Yu.V., Zil’berman P.E., Krikunov A.I., Panas A.I., Epshtein E.M. Current-induced inverse population of spin subbands in magnetic junctions.  Journal of experimental and theoretical physics Letters (JETPL). 2001. Vol.93. No.5. P.160.  

21. Gulyaev Yu.V., Zil’berman P.E., Malikov I.V., Mikhailov G.M., Panas A.I., Chigarev S.G., Epshtein E.M. Spin-injection terahertz radiation in magnetic junctions. JETP Letters. 2011.  Vol. 93, No.5, pp. 259-262.

22. Shcheglov V.I. The influence of exchange interaction and dynamic demagnetizing field on dispersion properties of Damon-Eshbach surface wave. Part 3. Special cases of dispersion. Zhurnal Radioelectroniki – Journal of Radio Electronics. 2019. ¹11. https://doi.org/10.30898/1684-1719.2019.11.4  (In Russian)

23. Shcheglov V.I. The influence of demagnetizing field on dispersion properties of Damon-Eshbach surface wave.  Zhurnal Radio electroniki – Journal of Radio Electronics. 2019. No.2. https://doi.org/10.30898/1684-1719.2019.2.3 (In Russian).

24. Shcheglov V.I. The influence of exchange interaction and dynamic demagnetizing field on dispersion properties of Damon-Eshbach surface wave. Part 1. Transverse wave number. Zhurnal Radioelectroniki – Journal of Radio Electronics. 2019. No.7. https://doi.org/10.30898/1684-1719.2019.7.3

(In Russian)

25. Shcheglov V.I. The influence of exchange interaction and dynamic demagnetizing field on dispersion properties of Damon-Eshbach surface wave. Part 2. Dispersion relation.  Zhurnal Radioelectroniki – Journal of Radio Electronics. 2019. No.9. Available at: http://jre.cplire.ru/jre/sep19/8/text.pdf (In Russian) 

26. Damon R.W., Eshbach J.R. Magnetostatic modes of a ferromagnet slab.  J. Phys. Chem. Solids. 1961. Vol.19. No.3/4. P.308.

27. Shavrov V.G., Shcheglov V.I. Magnitostaticheskie volny v neodnorodnih polyah. [Magnetostatic waves in nonuniform magnetic fields]. Moscow, Fizmatlit Publ. 2016. (In Russian)

28. Shavrov V.G., Shcheglov V.I. Magnitostaticheskie I elektromagnitnie volny v sloshnih structurah. [Magnetostatic waves in composite structures]. Moscow, Fizmatlit Publ. 2017. (In Russian)

29. Shavrov V.G., Shcheglov V.I. Ferromagnitniy resonans v usloviyah orientacionnogo perehoda. [Ferromagnetic resonance in conditions of orientation transition]. Moscow, Fizmatlit Publ. 2018. (In Russian)

30. Shavrov V.G., Shcheglov V.I. Dinamika namagnichennosty v usloviyah izmeneniz eye orientacii. [Dynamics of magnetization in conditions of its orientation changing]. Moscow, Fizmatlit Publ. 2019. (In Russian)

31. Vizulin S.A., Rozenson A.E., Sheh S.A, About the spectrum of magnetostatic surface waves in ferrite film with dissipation. Journal of Communications Technology and Electronics. 1991. Vol.36. No. 1. P.164.  

32. Polzikova N.I., Raevsky A.O. The special features of surface spin waves dispersion laws in structures contained superconductor. Phys.Stat.Sol. 1996. Vol.38. No.10. P.2037

33. Keller Yu.I., Makarov P.A., Shavrov V.G., Shcheglov V.I. The dispersion properties of electromagnetic waves on in-plane magnetized ferrite plate. Zhurnal Radioelectroniki – Journal of Radio Electronics. 2014. No.7. https://doi.org/10.30898/1684-1719.2018.4.7 (In Russian)

34. Makarov P.A., Shavrov V.G., Shcheglov V.I. Influence of dissipation on magnetostatic surface waves in tangent magnetized ferrite plate. Zhurnal Radioelectroniki – Journal of Radio Electronics. 2014. No.7. Available at: http://jre.cplire.ru/jul14/8/text.pdf  (In Russian)

35. Keller Yu.I., Makarov P.A., Shavrov V.G., Shcheglov V.I. The magnetostatic surface waves in ferrite plate with dissipation. Part 1. Dispersion relations. Zhurnal Radio electroniki – Journal of Radio Electronics, 2016. No. 2. Available at: http://jre.cplire.ru/jre/feb16/2/text.pdf (In Russian)

36. Keller Yu.I., Makarov P.A., Shavrov V.G., Shcheglov V.I. The magnetostatic surface waves in ferrite plate with dissipation. Part 2. Propagation of wave in perpendicular to field direction.  Zhurnal Radio electroniki – Journal of Radio Electronics, 2016, No.3. Available at: http://jre.cplire.ru/jre/mar16/1/text.pdf (In Russian)

37. Keller Yu.I., Makarov P.A., Shavrov V.G., Shcheglov V.I. The magnetostatic surface waves in ferrite plate with dissipation. Part 3. Propagation of wave in arbitrary direction relatively to field. Zhurnal Radio electroniki – Journal of Radio Electronics, 2016, No.3. Available at: http://jre.cplire.ru/jre/mar16/2/text.pdf (In Russian)

38. Keller Yu.I., Makarov P.A., Shavrov V.G., Shcheglov V.I.  Dispersion properties of magnetostatic surface waves in ferrite plate with dissipation. // Journal of Communications Technology and Electronics. 2018. V.63. ¹6. P.570-576. https://doi.org/10.1134/S106422691806013X

39. Keller Yu.I., Makarov P.A., Shavrov V.G., Shcheglov V.I.  Propagation of magnetostatic surface waves in a dissipative ferrite plate. // Journal of Communications Technology and Electronics. 2018. Vol.63. No.9. P.1035-1041.  https://doi.org/10.1134/S1064226918090097

40. Makarov P., Maltceva L., Kotov L., Shcheglov V. Magnetostatic waves in a medium with damping.  Eur. Phys. Journ. 2018. Vol.185. P.02012(3).

41. Makarov P., Maltceva L., Kotov L., Shcheglov V. Dispersion of the magnetostatic volume waves in a medium with damping. Eur. Phys. Journ. 2018. Vol.185. P.02015(4).

42. Schlömann E., Joseph R.I., Kohane T. Generation of spin waves in nonuniform magnetic fields, with application to magnetic delay line. Proc. IEEE. 1965. Vol.53. No.10. P.1495.

43. De Wames R.E., Wolfram T.  Dipole-exchange spin waves in ferromagnetic films.  JAP. 1970. Vol.41. No.4. P.987.

44. Wolfram T., de Wames R.E. Magnetoexchange branches and spin wave resonance in conducting and insulating films – perpendicular resonanceþ Phys. Rev. (B). 1971. Vol.4. No.9. P.3125. 

45. Schlömann E. Generation of spin waves in nonuniform magnetic fields. I. Conversion of electromagnetic power into spin-wave power and vice versa.  JAP. 1964. Vol.35. No.1. P.159.

46. Schlömann E., Joseph R.I. Generation of spin waves in nonuniform dc magnetic fields. II. Calculation of the coupling length.  JAP. 1964. Vol.35. No.1. P.167.

47. Schlömann E., Joseph R.I. Generation of spin waves in nonuniform magnetic fields. III. Magneto-elastic interaction.  JAP. 1964. Vol.35. No.8. P.2382.

48. Chang C.L., Tamming R.R., Broomhall T.J., Janusonis J., Fry P.W., Tobey R.I., Hayward T.J. Selective excitation of localized spin-wave modes by optically pumped surface acoustic waves.  Phys. Rev. Applied. 2018. Vol.10. No.3. P.034068(8).

49. Monosov Ya.A. Nelineyny ferromagnitniy rezonans [Nonlinear ferromagnetic resonance]. Moscow, Nauka Publ. 1971. (In Russian)

50. Lvov V.S. Nelineynie spinovie volny [Nonlinear spin waves]. Moscow, Nauka Publ. 1987. (In Russian)

51. Landsberg G.S. Optika [Optics]. Moscow, Nauka Publ. 1976. (In Russian)

52. Demidovich B.P., Maron I.A. Osnovy vychislitel'noy matematiki [Foundations of numerical mathematics]. Moscow, Fizmatgiz Publ. 1963. (In Russian)

53. Vlasov V.S., Kotov L.N., Shavrov V.G., Shcheglov V.I. Nonlinear excitation of hypersound in a ferrite plate under the ferromagnetic-resonance conditions. Journal of Communications Technology and Electronics. 2009. Vol.54. No.7. P.821-831. https://doi.org/10.1134/S1064226909070110

54. Gilbert T.L. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. on Magn. 2004. Vol.40. No.6. P.3443.

55. Korn G.A., Korn T.M. Mathematical handbook for scientists and engineers. New York. McGraw-Hill Book Company. 1968.

56. Sivukhin D.V. Obschiy kurs fiziki. Tom 3. Elektrichstvo [General physics course. Vol.3. Electricity]. Moscow, :Nauka” Publ., 1977. (In Russian).

57. Kalashnikov S.G. Elektrichestvo [Electricity]. Moscow, Nauka Publ. 1964. (In Russian)

58. Gurevich A.G. Ferrity na sverkhvysokikh chastotakh [Ferrites on microwave frequencies]. Moscow, Gos. Izd. fiz. mat. lit. 1960. (In Russian)

59. Gurevich A.G. Magnitnyi rezonans v ferritakh i antiferromagnetikakh [Magnetic resonance in ferrites and antiferromagnetics]. Moscow, Nauka Publ., 1973, 588 p. (In Russian)

60. Buffler K. Ferromagnetic resonance near the upper boundary of spin-wave spectrum. In. Ferrity v nelineinykh sverkhvysokochastotnykh ustroistvakh. [Ferrites in nonlinear microwave devices]. Edited by Gurevich A.G. Moscow, IL Publ. 1961. P. 613. (In Russian)

 

For citation:

Shcheglov V.I. On the question about the limitation of wave number in Damon-Eshbach task with exchange and demagnetization. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No. 7. https://doi.org/10.30898/1684-1719.2020.7.5  (In Russian)