Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹7

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.7.12

 

 

 

ON THE PROPAGATION VELOCITY OF A LINEARLY
FREQUENCY-MODULATED SIGNAL IN A DISPERSING MEDIUM
(USING THE METHOD OF MOMENTS)

 

N.S. Bukhman

 

Samara State Technical University, Samara
443100, Russia, Samara, Molodogvardeyskaya str., 244

 

The paper was received April 13, 2025.

 

Abstract. It is shown that in a selectively absorbing medium, the propagation velocity of a linearly frequency-modulated signal differs from its group velocity and depends on its modulation index, and the "modulation" addition to the group delay time reverses its sign when the sign of the modulation index changes. As a result, the propagation velocity of a linearly frequency-modulated signal can be superluminal at its subluminal group velocity and superluminal at its subluminal group velocity. When the center of the spectral line falls within the spectrum of a linearly frequency–modulated signal, a single linearly frequency-modulated signal is divided into two signals, one of which propagates at a speed higher than the group velocity (possibly higher than the vacuum light velocity), and the second is lower than the group velocity. The difference in the propagation speed of linearly frequency-modulated signals differing in the sign of the modulation index can lead to the fact that the initially amplitude-modulated signal, when propagating in a selectively absorbing medium, can be divided into several signals propagating at different speeds, and these signals, under certain conditions, can also be purely amplitude-modulated. Obviously, these effects can occur not only when a signal propagates in a selectively absorbing medium, but also when it is reflected from a selectively absorbing surface and propagated through linear filters in circuit theory.

Key words: linear frequency modulated signal, group velocity, superluminal group velocity, subluminal group velocity, dispersing medium.

Corresponding author: Bukhman Nikolay Sergeevich, nik3142@yandex.ru

References

1. Vinogradova M. B., Rudenko O. V., Suhorukov A. P. Teoriya voln. – 1979.

2.  Vaĭnshteĭn L. A. Propagation of pulses //Soviet Physics Uspekhi. – 1976. – Ò. 19. – ¹. 2. – Ñ. 189. https://doi.org/10.1070/PU1976v019n02ABEH005138  

3. Landau L. D., Lífshíts E. M. Electrodynamics of continuous media. – Oxford : Pergamon Press, 1946. – Ñ. 1963.

4.  Vlasov S. N., Petrishhev V. A., Talanov V. I. Usrednennoe opisanie volnovy`x puchkov v linejny`x i nelinejny`x sredax (metod momentov) //Izv. vuzov. Radiofizika. – 1971. – T. 14. – ¹. 9. – S. 1453-1463.

5.  Bliox P. V. Szhatie impul`sa izlucheniya v dispergiruyushhej srede so sluchajny`mi neodnorodnostyami //Izv. vuzov. Radiofizika. – 1964. – T. 7. – ¹. 3. – S. 460-470.

6. Bukhman N.S. On the Change in the Duration of a Narrow-Band Signal in a Dispersive Medium with Increasing Path Length (Within the Framework of the Method of Moments) // Radiophysics and Quantum Electronics. – 2024. – Ò. 67. – ¹ 2. – Ñ. 166-180. https://doi.org/10.1007/s11141-025-10363-w  

7. Macke B., Ségard B., Wielonsky F. Optimal superluminal systems //Physical Review E—Statistical, Nonlinear, and Soft Matter Physics. – 2005. – Ò. 72. – ¹. 3. – Ñ. 035601. https://doi.org/10.1103/PhysRevE.72.035601

8. Wang L. J., Kuzmich A., Dogariu A. Gain-assisted superluminal light propagation //Nature. – 2000. – Ò. 406. – ¹. 6793. – Ñ. 277-279. https://doi.org/10.1038/35018520

9. Talukder M. A. I., Amagishi Y., Tomita M. Superluminal to subluminal transition in the pulse propagation in a resonantly absorbing medium //Physical Review Letters. – 2001. – Ò. 86. – ¹. 16. – Ñ. 3546. https://doi.org/10.1103/PhysRevLett.86.3546

10. Dogariu A., Kuzmich A., Wang L. J. Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity //Physical Review A. – 2001. – Ò. 63. – ¹. 5. – Ñ. 053806. https://doi.org/10.1103/PhysRevA.63.053806

11. Akulshin A. M., Cimmino A., Opat G. I. Negative group velocity of a light pulse in cesium vapour //Quantum Electronics. – 2002. – Ò. 32. – ¹. 7. – Ñ. 567.

12. Macke B., Ségard B. Propagation of light-pulses at a negative group-velocity //The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics. – 2003. – Ò. 23. – Ñ. 125-141. https://doi.org/10.1140/epjd/e2003-00022-0

13. Akulshin A. M. et al. Pulses of" fast light," the signal velocity, and giant Kerr nonlinearity //LASER PHYSICS-LAWRENCE-. – 2005. – Ò. 15. – ¹. 9. – Ñ. 1252.

14. Zolotovskiĭ I. O. , Sementsov D. I. Velocity of the Maximum of the Envelope of a Frequency-Modulated Gaussian Pulse in an Amplifying Nonlinear Medium // Optics and Spectroscopy . – 2005. – V. 99. – No 1. – P. 81.  https://doi.org/10.1134/1.1999897

15. Zolotovskiĭ I. O., Sementsov D. I. Velocity of the pulse envelope in tunnel-coupled optical waveguides with strongly differing parameters //Optics and spectroscopy. – 2006. – Ò. 101. – Ñ. 114-117. https://doi.org/10.1134/S0030400X06070204

16. Macke B., Ségard B. From fast to slow light in a resonantly driven absorbing medium //Physical Review A—Atomic, Molecular, and Optical Physics. – 2010. – Ò. 82. – ¹. 2. – Ñ. 023816. https://doi.org/10.1103/PhysRevA.82.023816

17. Akulshin A. M., McLean R. J. Fast light in atomic media //Journal of Optics. – 2010. – Ò. 12. – ¹. 10. – Ñ. 104001. https://doi.org/10.1088/2040-8978/12/10/104001

18. Malykin G. B., Romanets E. A. Superluminal motion //Optics and Spectroscopy. – 2012. – Ò. 112. – Ñ. 920-934. https://doi.org/10.1134/S0030400X12040145

19.  Zolotovskii I. O., Minvaliev R. N., Sementsov D. I. Dynamics of frequency-modulated wave packets in optical guides with complex-valued material parameters //Physics-Uspekhi. – 2013. – Ò. 56. – ¹. 12. – Ñ. 1245.. https://doi.org/10.3367/UFNe.0183.201312e.1353

20. Macke B., Ségard B. Simultaneous slow and fast light involving the Faraday effect //Physical Review A. – 2016. – Ò. 94. – ¹. 4. – Ñ. 043801. https://doi.org/10.1103/PhysRevA.94.043801

21. Ravelo B. Investigation on microwave negative group delay circuit //Electromagnetics. – 2011. – Ò. 31. – ¹. 8. – Ñ. 537-549. https://doi.org/10.1080/02726343.2011.621106

22. Macke B., Ségard B. // Opt. Commun. 2008. V. 281. ¹ 1. P. 12-17. https://doi.org/10.1016/j.optcom.2007.09.007

23. Tanaka H. et al. Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapor //Physical Review A. – 2003. – Ò. 68. – ¹. 5. – Ñ. 053801. https://doi.org/10.1103/PhysRevA.68.053801

24. Macke B., Ségard B. On-resonance material fast light //Physical Review A. – 2018. – Ò. 97. – ¹. 6. – Ñ. 063830. https://doi.org/10.1103/PhysRevA.80.011803

25. Bukhman N.S. On the Velocity of Propagation of a Frequency-Modulated Wave Packet in a Dispersive Absorbing Medium // Optics and Spectroscopy. – 2004. – Ò. 97. – ¹ 1. – Ñ. 114-121.  https://doi.org/10.1134/1.1781291

26. Bukhman N.S. On the propagation velocity of a narrow-band signal in a dispersing medium (using the method of moments).  // Journal of Radio Electronics. – 2025. – ¹ 7. https://doi.org/10.30898/1684-1719.2025.7.2 (In Russian).

27.  Bukhman N.S. On the relationship between the delay time of a narrowband signal |in a dispersing medium and its attenuation. // Journal of Radio Electronics. – 2024. – ¹. 5. https://doi.org/10.30898/1684-1719.2024.5.12 (In Russian)

28. Bukhman N. S. On the principle of causality and superluminal signal propagation velocities //Journal of Communications Technology and Electronics. – 2021. – Ò. 66. – Ñ. 227-241.

For citation:

Bukhman N.S. On the propagation velocity of a linearly frequency-modulated signal in a dispersing medium (using the method of moments). // Journal of Radio Electronics. – 2025. – ¹ 7. https://doi.org/10.30898/1684-1719.2025.7.12 (In Russian)