Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹7
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.7.14
NUMERICAL INVESTIGATION OF THE ACCURACY
AND EFFiciency OF INTEGRAL FORMULATIONS
IN ELECTROMAGNETIC FIELD PROBLEMS
of NEAR METALLIC OBJECTS SCATTERING
A.A. Slobodyanenko1, V.S. Kulik2, V.B. Romodin1, L.V. Shebalkova1
1Novosibirsk State Technical University
630073, Russia, Novosibirsk, Prospekt K. Marksa, 202Tomsk State University of Control Systems and Radioelectronics,
634050, Russia Tomsk, Prospect Lenina, 40
The paper was received April 17, 2025.
Annotation. The paper considers the problem of electromagnetic field scattering from a metallic object. Tangential, normal and combined integral formulations are realized. Based on a general theoretical analysis, numerical studies of integral formulations have been carried out. Accuracy and effectiveness, as well as other features and limitations in the numerical solutions of the scattering problem were demonstrated. Special attention is paid to the analysis of the integral formulation accuracy in the scattered electromagnetic field determination near a scattering object. This analysis was carried out using the problem of an electromagnetic field scattering on a metallic sphere. The numerical and analytical solutions were compared. In particular, it is shown that the tangential formulation of the integral equation of the electric field provides the best accuracy in the scattered field determination in the near field, and it is preferable for use in the design of metallic structures with the required level of reflections. At the same time, the combined integral formulation makes it possible to provide an optimal solution to the scattering problem with respect to the “accuracy – time” criterion. This is relevant in the case of an object of large electrical size.
Key words: integral equations, scattering theory, method of moments, near field, accuracy, efficiency.
Corresponding author: Slobodyanenko Alexandr Alexsandrovich, sepwood@gmail.com
References
1. Gordon W. Far-field approximations to the Kirchoff-Helmholtz representations of scattered fields //IEEE Transactions on antennas and propagation. – 1975. – Ò. 23. – ¹. 4. – Ñ. 590-592. https://doi.org/10.1109/TAP.1975.1141105
2. Bohren C. F., Huffman D. R. Absorption and scattering by a sphere //Absorption and scattering of light by small particles. – 1983. – Ò. 7. – Ñ. 82-129.
3. Ishimaru A. Electromagnetic wave propagation, radiation, and scattering: from fundamentals to applications. – John Wiley & Sons, 2017.
4. Bowman J. J., Senior T. B. A., Uslenghi P. L. E. Electromagnetic and acoustic scattering by simple shapes (Revised edition) //New York. – 1987.
5. Dong C. et al. EM scattering from complex targets above a slightly rough surface //PIERS online. – 2007. – Ò. 3. – ¹. 5. – Ñ. 685-688. https://doi.org/10.2529/PIERS061212012947
6. Charris V. D., Torres J. M. G. Analysis of radar cross section assessment methods and parameters affecting it for surface ships //Ship science & technology. – 2012. – Ò. 6. – ¹. 11. – Ñ. 91-106. https://doi.org/10.25043/19098642.72
7. Zajkov A.O. Analiz rezonansnyh chastot jekranirujushhih korpusov na osnove monostaticheskoj jeffektivnoj ploshhadi rassejanija [Analysis of resonant frequencies of shielding enclosures based on monostatic effective scattering area] // Mezhdunar. nauch.-tehn. konf. studentov, aspirantov i molodyh uchjonyh «Nauchnaja sessija TUSUR–2024»: sb. izbr. statej nauchnoj sessii TUSUR, Tomsk. – 2024. – Ch. 2. – C. 74–77. (In Russian)
8. Miheev P. A. Chislennoe reshenie zadachi difrakcii jelektromagnitnogo polja na sisteme otverstij [Numerical solution of the problem of electromagnetic field diffraction on a system of holes] //Vestnik Moskovskogo universiteta. Serija 15. Vychislitel'naja matematika i kibernetika. – 2014. – ¹. 1. – C. 15-22. (In Russian)
9. Ferrara F. et al. Near-field antenna measurement techniques //Handbook of antenna technologies. – Springer, 2016. – Ñ. 2107-2163.
10. Gershnabel E. et al. Antenna Near Field to Far Field Transformation in the Presence of Ground. – 2021.
11. Paulus A. et al. Comparison of source localization and scatterer modeling in near-field antenna measurements //2019 13th European Conference on Antennas and Propagation (EuCAP). – IEEE, 2019. – Ñ. 1-5.
12. Evstaf'ev E. E., Shapkina N. E., Balabuha N. P. Issledovanie vlijanija opory, na kotoroj raspolozhen ob”ekt, na rassejannoe ob'ektom jelektromagnitnoe pole [Investigation of the effect of the support on which the object is located on the electromagnetic field scattered by the object] //Akustoopticheskie i radiolokacionnye metody izmerenij i obrabotki informacii. – 2020. – Ñ. 20-22. (In Russian)
13. Balabuha N. P. i dr. Issledovanie vlijanija nalichija opory na rassejannoe pole na ob”ekte v bezjehovoj kamere metodom matematicheskogo modelirovanija [Investigation of the effect of the presence of support on the scattered field on an object in an anechoic chamber by mathematical modeling] //Trudy Rossijskogo nauchno-tehnicheskogo obshhestva radiotehniki, jelektroniki i svjazi imeni AS Popova. – 2022. – Ñ. 160-163. (In Russian)
14. Harrington R. F. Field computation by moment methods. – Wiley-IEEE Press, 1993.
15. Gibson W. C. The method of moments in electromagnetics. – Chapman and Hall/CRC, 2021. https://doi.org/10.1201/9780429355509
16. Ylä-Oijala P., Taskinen M., Järvenpää S. Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods //Radio science. – 2005. – Ò. 40. – ¹. 06. – Ñ. 1-19. https://doi.org/10.1029/2004RS003169
17. Rao S., Wilton D., Glisson A. Electromagnetic scattering by surfaces of arbitrary shape //IEEE Transactions on antennas and propagation. – 1982. – Ò. 30. – ¹. 3. – Ñ. 409-418. https://doi.org/10.1109/TAP.1982.1142818
18. Hodges R. E., Rahmat‐Samii Y. The evaluation of MFIE integrals with the use of vector triangle basis functions //Microwave and Optical Technology Letters. – 1997. – Ò. 14. – ¹. 1. – Ñ. 9-14.
19. Xu Q. et al. A hybrid FEM-GO approach to simulate the NSA in an anechoic chamber //Applied Computational Electromagnetics Society Journal (ACES). – 2017. – Ñ. 1035-1041.
20. Rengarajan S. R., Rahmat-Samii Y. The field equivalence principle: Illustration of the establishment of the non-intuitive null fields //IEEE Antennas and Propagation Magazine. – 2000. – Ò. 42. – ¹. 4. – Ñ. 122-128. https://doi.org/10.1109/74.868058
21. Colton D., Kress R. Integral equation methods in scattering theory. – Society for Industrial and Applied Mathematics, 2013.
22. Monk P. Finite element methods for Maxwell's equations. – Oxford university press, 2003.
23. Contopanagos H. et al. Well-conditioned boundary integral equations for three-dimensional electromagnetic scattering //IEEE Transactions on Antennas and Propagation. – 2002. – Ò. 50. – ¹. 12. – Ñ. 1824-1830. https://doi.org/10.1109/TAP.2002.803956
24. Burton M., Kashyap S. A study of a recent, moment-method algorithm that is accurate to very low frequencies //Applied Computational Electromagnetics Society Journal. – 1995. – Ò. 10. – Ñ. 58-68.
25. Zhang Y. et al. Magnetic field integral equation at very low frequencies //IEEE Transactions on Antennas and Propagation. – 2003. – Ò. 51. – ¹. 8. – Ñ. 1864-1871. https://doi.org/10.1109/TAP.2003.814753
26. Vecchi G. Loop-star decomposition of basis functions in the discretization of the EFIE //IEEE Transactions on Antennas and Propagation. – 1999. – Ò. 47. – ¹. 2. – Ñ. 339-346. https://doi.org/10.1109/8.761074
27. Langenberg K. J. A thorough look at the nonuniqueness of the electromagnetic scattering integral equation solutions as compared to the scalar acoustic ones //Radio Science. – 2003. – Ò. 38. – ¹. 2. – Ñ. 22-1-22-8. https://doi.org/10.1029/2001RS002558
28. Snorre H. Christiansen. “Discrete Fredholm Properties and Convergence Estimates for the Electric Field Integral Equation.” Mathematics of Computation 73, no. 245 (2004): 143–67. http://www.jstor.org/stable/4099862.
29. Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen //Annalen der physik. – 1908. – Ò. 330. – ¹. 3. – Ñ. 377-445. https://doi.org/10.1002/andp.19083300302
For citation:
Slobodyanenko A.A., Kulik V.S., Romodin V.B., Shebalkova L.V. Numerical investigation of the accuracy and efficiency of integral formulations in electromagnetic field problems of near metallic objects scattering. // Journal of Radio Electronics. – 2025. – ¹ 7. https://doi.org/10.30898/1684-1719.2025.7.14 (In Russian)