**Abstract.** Previous
research indicates that the Meixner filters can be a constructive alternative
to the discrete Laguerre filters in signal processing applications. This may be
explained by the impact of an extra parameter which allows providing better
series expansion: it becomes possible to ensure the same approximation results
using fewer terms. However, the orthogonal Meixner filters extensively studied
so far either 1) have a rational z-transform only for even values of the extra
parameter or 2) suggest synthesizing the Meixner filters from the Laguerre
filters based on matrices transformation that leads to hardware redundancy. The
primary focus of the present study is the nonorthogonal Meixner filters. In
contrast to the previously discussed filters, these filters are rational for
any integer value of the extra parameter and have a simple structure. But, it
still seems that more attention needs to be drawn to the problem of expansions
in nonorthogonal filters. This paper is aimed at considering the problem of
computing the coefficients of the nonorthogonal Meixner filters with GNU
Octave. To achieve this purpose, the study provides the analysis of computing
the coefficients using build-in functions: *quad*, *quadgk*, *quadcc*,
*quadv *as well as the vectorized representation of *quadl*. Based on
the analysis results, the present research yields another vectorized
representation of the coefficients in the form of normal equation to boost
computational efficiency and to ensure numerical stability. In addition, the
results of computations experiments confirmed the validity of the proposed
vectorized representation to solve pole position problem for the nonorthogonal
Meixner filters.

**Key words:** Meixner filters, vectorized computation, normal equation, quadrature.

**References**

1. Nurges
U. A. Synthesis of regulator using Laguerre model. Automation Remote Control.
1994, Vol. 49, p. 1638-1644.

2. Prokhorov
S. A. *Approksimativnyj analiz sluchajnyh processov.* [Approximative
analysis of stochastic processes]. Samara, SNC RAN Publ. 2001. 380 p. (In
Russian)

3. Bessonov
A. A., Zagashvili Y. V., Markelov A.S. *Metody i sredstva identifikacii
dinamicheskih objektov.* [Methods and tools for dynamic system
identification]. Leningrad, Energoizdat Publ. 1989. 280 p. (In Russian)

4. Kyzmin
L. V., Emelyanov R. Y. System of orthogonal signals for noncoherent receiving
of ultrawideband chaotic radiopulses in multipath channel. *Zhurnal
Radioelektroniki - Journal of Radio Electronics*, 2014, No. 7. Available at
http://jre.cplire.ru/iso/jul14/1/text.pdf. (In Russian)

5. Balakin
D. A., Shtykov V. V. The construction of orthogonal filters bank based on
Hermit transform for signal processing. *Zhurnal Radioelektroniki - Journal
of Radio Electronics*, 2014, No. 9. Available at
http://jre.cplire.ru/iso/sep14/1/text.pdf. (In Russian)

6.
Nivin À. Å., Saushev À. V., Shoshmin V. À. Synthesis of orthogonal filters in
statistical identifications of dynamic system. *Izvestiya vysshikh uchebnykh
zavedeniy Priborostroenie - Journal of Instrument Engineering*, 2013, Vol.
56, No. 10, pp. 5-10. (In Russian)

7.
Telescu M., Iassamen N., Cloastre P., Tanguy N. A simple algorithm for
stable order reduction of z-domain Laguerre models. *Signal Processing*,
2013, Vol. 93, pp. 332-337.

8.
Nurges U. A. Meixner models of linear discrete systems. *Automation Remote
Control*, 1988, No. 49, p. 128-136.

9.
Den Brinker A. C. Meixner-like functions having a rational z-transform. *Int.
J. Circuit Theory Appl*., 1995, Vol. 23, pp. 237-246.

10.
Belt H. J. W. Orthogonal basis for adaptive filtering (Ph.D. thesis), Eindhoven
University of Technology, May 1997.

11.
Meixner J. Orthogonale polynomsysteme mit einer besonderen gestalt der
erzeugenden funktion. *J. Lond. Math. Soc*., 1934, Vol. 9, pp. 6-13.

12.
Prokhorov S. A. , Kulikovskikh I. M. Unique condition for generalized Laguerre
functions to solve pole position problem. *Signal Processing*, 2015, Vol.
108, pp. 25-29.

13.
Butkovskii A. G., Postnov S. S., Postnova E. A. Fractional integro-differential
calculus and its control-theoretical applications. II. Fractional dynamic
systems: Modeling and hardware implementation. *Automation Remote Control*,
2013, Vol. 74, No. 5, pp. 725-749.

14.
Prokhorov S. A., Kulikovskikh I. M. Optimality condition for Meixner filters. *Zhurnal
Radioelektroniki - Journal of Radio Electronics*, 2015, No. 4. Available at
http://jre.cplire.ru/mac/apr15/9/text.pdf. (In Russian)

15.
Prokhorov S. A., Kulikovskikh I. M. Pole position problem for Meixner filters. *Signal
Processing*, 2016, Vol. 120, pp. 8-12.

16.
Klink W. H., Payne G. L. Approximating with nonorthogonal basis functions.

*J. Comput. Phys*., 1976, Vol. 21, pp. 208-226.

17.
GNU Octave. Available at
https://www.gnu.org/software/octave/. Accessed
14.04.2016.

18.
Numerical Integration. Functions of one variable. Available at
http://www.gnu.org/software/octave/doc/v4.0.1/Functions-of-One-Variable.html.
Accessed 14.04.2016.

19.
Getreuer P. Writing fast MATLAB code, February 2009. Available at
http://www.ee.columbia.edu/~marios/matlab/Writing_Fast_MATLAB_Code.pdf. Accessed 14.04.2016.