"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 6, 2019

contents of issue      DOI  10.30898/1684-1719.2019.6.7     full text in Russian (pdf)  

UDC 621.391.82; 004.3; 530.17

Analysis of the noise immunity of computer equipment under exposure to the lightning discharge on the lighting protection of a building on the basis of physical modeling

 

M. G. Nuriev, R. M. Gizatullin, V. A. Drozdikov, E. I. Pavlova

Kazan National Research Technical University named after A.N. Tupolev-KAI, 10 Karl Marx Str., Kazan, 420111, Russia

 

The paper is received on June 7, 2019

 

Abstract. Lightning is the most common source of powerful electromagnetic interference of natural origin. The most dangerous case of electromagnetic interference is the direct discharge of lightning onto the building's lightning protection system. One of the possible effective approaches to solving the problem of modeling electromagnetic interference in communication lines when exposed to a lightning discharge is the use of physical modeling. The method of physical modeling consists in creating a laboratory physical model of a phenomenon or object on a reduced scale and conducting experiments on this model. The obtained data is then distributed to the phenomenon in real scales. A technique for the physical modeling of electromagnetic interference in communication lines to predict the noise immunity of computing equipment’s when a lightning discharge affects a building's lightning protection system are paper proposes. Physical model and stand for conducting a physical experiment, taking into account the scale factors are created. An example of physical modeling of a magnetic field and electromagnetic interference in a communication line under the influence of a lightning discharge is given. Methods for predicting the noise immunity of computing equipment’s elements when subjected to simulated electromagnetic interference are proposed.

Key words: interference, noise immunity, computing equipment, lightning discharge, lightning protection, physical modeling, technique.

References

1.       Kravchenko V.I., Bolotov E.A., Letunova N.I. Radioelektronnye sredstva i moshchnye elektromagnitnye pomekhi [Radioelectronic facilities and powerful electromagnetic interference]. Moscow, Radio i Svyaz’ Publ., 1987. 256 p. (In Russian)

2.       Henry O.W. Electromagnetic Compatibility Engineering. New Jersey, John Wiley & Sons, 2009. 872 p.

3.       Gizatullin Z.M. Analysis of the magnetic fields inside the building under the influence of lightning discharge on the external system of lightning protection of the building. Tekhnologii elektromagnitnoy sovmestimosti – Electromagnetic Compatibility Technologies, 2010, No. 3, pp. 30-36. (In Russian)

4.       Gizatullin Z.M. Analysis of the electromagnetic environment inside buildings under the influence of a lightning discharge. Izvestiya vysshih uchebnyh zavedenij. Problemy ehnergetiki – News of higher educational institutions. Problems of energy, 2008, No. 1-2, pp. 38-47. (In Russian)

5.       Gizatullin Z.M., Fazulyanov FM, Shuvalov L.N., Gizatullin R.M. The integrity of information in a USB flash drive when exposed to a pulsed magnetic field. Zhurnal radioelektroniki – Journal of Radio Electronics, 2015, No. 8, Available at http://jre.cplire.ru/jre/aug15/8/text.pdf. (In Russian)

6.       Kirillov V.Yu., Klykov A.V., Nguyen V.Kh., Tomilin M.M. Investigation of communication resistance and shielding efficiency of onboard cable aircraft. Tekhnologii elektromagnitnoy sovmestimosti – Electromagnetic Compatibility Technologies, 2014, No. 2, pp. 3-8. (In Russian)

7.       Gut R.V., Kirpichnikov A.P., Lyasheva S.A., Shleymovich M.P. Methods of rank filtration in video surveillance systems. Vestnik tekhnologicheskogo universiteta - Bulletin of the Technological University, 2017, Vol. 20, No. 17, pp. 71-73. (In Russian)

8.  Kirpichnikov A.P., Lyasheva S.A., Shleymovich M.P. Detection and tracking of people in intelligent detectors of emergency situations. Vestnik tekhnologicheskogo universiteta - Bulletin of the Technological University, 2014, Vol. 17, No. 21, pp. 351–356. (In Russian)

9.  Ryabov Yu.G. General provisions on the preservation of survivability and ensuring the protection of RES from the effects of electromagnetic weapons and electromagnetic terrorism. Spetsial'naya tekhnika – Special equipment, 2002, No. 3, pp. 23-34. (In Russian)

10.  Ryabov Yu.G., Lopatkin S.M. The basic principles of the control of electromagnetic resistance of radio-electronic means. Radiopromyshlennost – Radio industry, 1995, No. 2, pp. 27-33. (In Russian)

11.  Gizatullin Z.M., Gizatullin R.M. Modeling of the electromagnetic environment based on the theory of large-scale experiment for the problems of electromagnetic compatibility and information protection. Informatsionnye tekhnologii – Information Technologies, 2013, No. 4, pp. 19-22. (In Russian)

12.   Nuriev M.G., Gizatullin Z.M. Physical modeling of deliberate electromagnetic influence on computer technology through building metal structures. Informaciya i bezopasnost – Information and Security, 2017, No. 3, pp. 456-459. (In Russian)

13.  Gizatullin Z.M., Gizatullin R.M., Nuriev M.G. Mathematical models for physical modeling of electromagnetic compatibility problems. Izvestiya vysshih uchebnyh zavedenij. Problemy ehnergetiki – News of higher educational institutions. Problems of energy, 2015, No. 1-2, pp. 115-122. (In Russian)

14.  Gizatullin Z.M., Nuriev M.G., Gizatullin R.M. Physical simulation of electromagnetic interference with electromagnetic interference on macroobjects. Zhurnal radioelektroniki – Journal of Radio Electronics, 2015, No. 6, Available at http://jre.cplire.ru/jre/jun15/1/text.pdf. (In Russian)

15.  Gizatullin Z.M., Gizatullin R.M., Nuriev M.G. Technique of physical modeling of lightning strike effects on aircraft. Russian Aeronautics, 2016, Vol. 59, No. 2, pp. 157-160.

16.  Nuriev M.G., Gizatullin Z.M., Gizatullin R.M. Physical Modeling of Electromagnetic Interferences in the Unmanned Aerial Vehicle in the Case of High-Voltage Transmission Line Impact. Russian Aeronautics, 2017, Vol. 60, No. 2, pp. 292-298.

17.   Venikov V.A. Teoriya podobiya i modelirovaniya [The theory of similarity and modeling]. Moscow, Vysshaya Shkila Publ., 1976. 479 p. (In Russian)

18.  Piantini A., Janiszewski J.M. Scale models and their application to the study of lightning transients in power systems. Lightning Electromagnetics. Power and Energy Series, London, United Kingdom, 2012. pp. 719-764.

19.   Johnson H., Graham M. High Speed Signal Propagation: Advanced Black Magic. New Jersey, Prentice Hall, 2003. 766 p.

20.  Passport PS 0309467. Ispytatelny generator mikrosekundnykh impul'snykh pomekh IGM 4.1. Tekhnicheskoe opisanie: rukovodstvo po ekspluatatsii [Passport. no. ps 0309467. Test generator of microsecond pulse noise IGM 4.1. Technical description: instruction manual]. Petrozavodsk, NPO Proryv, 2009. 12 p. (In Russian)

21.  Borisov R.K., Kolechitsky E.S. Kolomiets E.V. A new approach to the simulation of impulse noise in the secondary circuits of substations. Elektrichestvo – Electricity, 2007, No. 12, pp. 51-53. (In Russian)

22.  Passport. Oscillograf Lecroy WaveRanner 44MXi/64MXi/ 104MXi/204MXi: rukovodstvo po ekspluatacii [Passport. Oscilloscopes Lecroy WaveRanner 44MXi/64MXi/104MXi/204MXi: instruction manual]. Moscow, 2009. 347 p. IIn Russian)

23.   Pirogov Yu.A., Solodov A.V. Damage of integrated microcircuits in the fields of radio emission. Zhurnal radioelektroniki – Journal of Radio Electronics, 2013, No. 6, Available at http://jre.cplire.ru/jre/jun13/15/text.pdf. (In Russian)

24.    Zdukhov L.N., Parfenov Yu.V., Tarasov O.A., Chepelev V.M. Three possible mechanisms for the emergence of electronic device failures as a result of electromagnetic effects. Tekhnologii elektromagnitnoy sovmestimosti – Technologies of electromagnetic compatibility, 2018, No. 2, pp. 22-34. (In Russian)

25.  Balyuk N.V., Kechiev L.N., Stepanov P.V. Moschnyy elektromagnitnyy impuls vozdeystvie na elektronnye sredstva i metody zaschity [A powerful electromagnetic pulse: the impact on electronic means and methods of protection]. Moscow, IDT Group, 2007. 478 p. (In Russian)

26.  Kechiev L.N., Pozhidaev E.D. Zashchita elektronnyh sredstv ot vozdeystviya staticheskogo elektrichestva [Protection of electronic means against static electricity]. Moscow, Publishing house «Tekchnologii», 2005. 352 p. (In Russian)

27.  Gizatullin ZM, Gizatullin R.M. Experimental Investigations of the Noise Immunity of a Personal Computer with a Pulsed Discharge of Static Electricity. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva – Bulletin of the Kazan State Technical University named after A.N. Tupolev, 2011, No. 3, pp. 78-83. (In Russian)

28.  Kechiev L.N. Proektirovanie pechatnyh plat dlya sifrovoj bystrodejstvuyushchej apparatury [Designing printed circuit boards for digital high-speed equipment]. Moscow, IDT Group Ltd., 2007. 616 p. (In Russian)

29.  Korolev A.I. Kody i ustroystva pomekhoustoychivogo kodirovaniya informacii nauchno prakticheskoe izdanie [Codes and devices noise immunity coding information: scientific and practical publication]. Minsk, 2002. 286 p. (In Russian)

30.  Shleimovich M.P., Kirpichnikov A.P., Lyasheva S.A., Medvedev M.V. The selection of boundaries in images based on the model of the energy characteristics of the wavelet transform. Vestnik tekhnologicheskogo universiteta - Bulletin of the Technological University, 2017, No. 21, pp. 103-107. (In Russian)

31.  Lyasheva S.A., Medvedev M.V., Shlejmovich M.P. Wavelet compression of images in control systems of unmanned aerial vehicles. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva – Bulletin of the Kazan State Technical University named after A.N. Tupolev, 2013 , No. 4, pp. 218-222. (In Russian)

32.  Gizatullin Z.M. Reduction of electromagnetic interference in interconnects of multi-layer printed circuit boards. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva – Bulletin of the Kazan State Technical University named after A.N. Tupolev, 2012, No. 2, pp. 199-205. (In Russian)

33.  Belousov A.O., Gazizov TR, Zabolotsky A.M. Multi-wire microstrip line as a modal filter for protection against ultrashort pulses.  Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioehlektroniki - Reports of Tomsk State University of Control Systems and Radioelectronics, 2015, No. 3, pp. 124-128. (In Russian)

34.   Gizatullin Z.M. Technology for predicting and improving the electromagnetic compatibility of digital electronic media with external high-frequency pulsed electromagnetic influences. Tekhnologii elektromagnitnoy sovmestimosti – Technologies of electromagnetic compatibility, 2010, No. 3, pp. 22-29. (In Russian)

35.  Gizatullin Z.M. End-to-end prediction of noise immunity of electronic computing means inside buildings with external electromagnetic effects. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva – Bulletin of the Kazan State Technical University named after A.N. Tupolev, 2011, No. 2, pp. 123-128. (In Russian)

36.  Gizatullin Z.M., Gizatullin R.M., Nuriev M.G., Nazmetdinov F.R. Reducing electromagnetic interference and protecting information in computer technology with the help of screening glasses. Vestnik Kazanskogo gosudarstvennogo ehnergeticheskogo universiteta – Bulletin of Kazan State Power Engineering University, 2017, No. 3, pp. 36-45. (In Russian)

 

For citation:

M. G. Nuriev, R. M. Gizatullin, V. A. Drozdikov, E. I. Pavlova. Analysis of the noise immunity of computer equipment under exposure to the lightning discharge on the lighting protection of a building on the basis of physical modeling. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 6. Available at http://jre.cplire.ru/jre/jun19/7/text.pdf

DOI  10.30898/1684-1719.2019.6.7