Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹6
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.6.11
Investigation of the properties of the Fourier transform
of Hermite-Gauss wavelets and application
of the results obtained in radio electronics problems
A.Yu. Grishentsev1, N.V. Korovkin2, A.G. Korobeynikov1,3
1 ITMO University, 197101, Russia, St. Petersburg, Kronverkskij str., 49, lit. A.
2 Peter the Great St.Petersburg Polytechnic University,
195251, Russia, St. Petersburg, Politekhnicheskaya str., 29, lit. B
3 St.Petersburg branch of Pushkov institute of terrestrial magnetism, ionosphere and radio wave propagation RAS,
199034, Russia, St.-Petersburg, Universitetskaya emb., 5, lit. B
The paper was received March 16, 2025.
Abstract. Hermite-Gauss wavelets are obtained as a result of the product of Hermite polynomials by the Gauss function. Hermite-Gauss wavelets form a basis in the space of real numbers and therefore allow decomposition of functions satisfying the Dirichlet condition. The set of orthonormal forms of Hermite-Gauss wavelets are eigenfunctions of the Fourier transform, such a feature determines the use of wavelets in a wide range of theoretical and practical engineering problems. An analysis of the literature shows that insufficient attention has been paid to the Fourier transform of various forms of Hermite-Gauss wavelets, their mutual expression through the Fourier transform and connections with other functions having the form of a product of polynomials by a Gauss function. Therefore, according to the authors, the research is relevant. The subject of research is to increase the efficiency of the Fourier transform of some types of polynomials based on the Hermite-Gauss wavelet decomposition. In the course of the research, five interrelated theorems have been formulated and proved, forming the basis of the work. Two types of decomposition are used to formulate and prove theorems. The first decomposition method is based on a generalized Fourier transform based on the Hermite-Gauss wavelet basis. The second method of decomposition of polynomials is based on sequential division with remainder. The main result of the work is the proposed mathematical apparatus in the form of formulated and proven theorems applicable to the Fourier transform of arbitrary polynomials of one variable multiplied by the Gauss function, and the transformation is performed analytically and without using the Fourier integral. According to the authors, the obtained result contributes to the development of the theory and practice of signal processing in the field of radio electronics, optoelectronics, electrical engineering and the theory of automatic control. In the final part of the paper, some examples of the use of the developed theory are presented and a method for synthesizing the responses of systems with a fractional-rational transfer function and a method for synthesizing radio signals based on Hermite-Gauss wavelets is proposed.
Key words: Hermite-Gauss wavelets, Hermite polynomials, Fourier transform, eigenfunctions, transfer function, signal synthesis.
Corresponding author: Grishentsev Alexey Yur'evich, agrishentsev@yandex.ru
References
1. Hermite M. Sur un nouveau développement en série des fonctions. – Imprimerie de Gauthier-Villars, 1864.
2. Gradshtein I.S., Ryzhik I.S. Tablitsy integralov, summ, ryadov i proizvedenii [Tables of integrals, sums, series, and products]. M.: Nauka, 1971. 1108 p. (In Russian).
3. Prudnikov A.P., Brychkov YU.A., Marichev O.I. Integraly i ryady [Integrals and series]. M.: Nauka, 1981. 800 s. (In Russian).
4. Suetin S. P. Polinomy EhrmitA–Pade i kvadratichnye approksimatsii Shafera dlya mnogoznachnykh analiticheskikh funktsii [Hermite–Pade polynomials and Schafer quadratic approximations for multivalued analytic functions] //Uspekhi matematicheskikh nauk. 2020. Vol. 75. ¹. 4 (454). P. 213-214. https://doi.org/10.4213/rm9954 (In Russian).
5. Duran U. et al. A note on the (p, q)-Hermite polynomials //Appl. Math. Inf. Sci. – 2018. Vol. 12. ¹. 1. P. 227-231. https://doi.org/10.18576/amis/120122
6. Sharapudinov I. I., Gadzhieva Z. D., Gadzhimirzaev R. M. Raznostnye uravneniya i polinomy, ortogonal'nye po Sobolevu, porozhdennye mnogochlenami Meiksnera [Difference equations and Sobolev orthogonal polynomials generated by Meixner polynomials] //Vladikavkazskii matematicheskii zhurnal. 2017. Vol. 19. ¹. 2. P. 58-72. https://doi.org/10.23671/VNC.2017.2.6509 (In Russian).
7. Gorlov V. A., Parshin D. S. Razlozhenie funktsii s ehksponentsial'nym rostom v ryad Fur'e po ortogonal'nym polinomam Chebysheva-Ehrmita [Decomposition of a function with exponential growth into a Fourier series by Chebyshev-Hermite orthogonal polynomials] //Aktual'nye napravleniya nauchnykh issledovanii XXI veka: teoriya i praktika. 2015. Vol. 3. ¹. 8-3. P. 245-248. https://doi.org/10.12737/15633 (In Russian).
8. Dobrokhotov S.Yu., Tsvetkova A.V. O lagranzhevykh mnogoobraziyakh, svyazannykh s asimptotikoi polinomov Ehrmita. [On Lagrangian manifolds related to the asymptotics of Hermite polynomials] Matematicheskie zametki. – 2018. Vol. 104. ¹ 6. P. 835-850. https://doi.org/10.4213/mzm12093 (In Russian).
9. Rovba E.A., Pishchik K.V. Interpolyatsionnyi ratsional'nyi protsess Ehrmita-Feiera na otrezke [The Hermite-Feuer interpolation rational process on a segment]. Vestnik Grodnenskogo gosudarstvennogo universiteta imeni Yanki Kupaly. Seriya 2. Matematika. Fizika. Informatika, vychislitel'naya tekhnika i upravlenie. 2020. Vol. 10. ¹ 3. P. 6-15.
10. Tikhonov A.N., Samarskii A.A. Uravneniya matematicheskoi fiziki. [Equations of mathematical physics] M.: Nauka, 1977. 736 p. (In Russian).
11. Borzov V. V., Damaskinskii E. V. Obobshchennye kogerentnye sostoyaniya: Novyi podkhod [Generalized coherent states: A new approach] //Zapiski nauchnykh seminarov Sankt-Peterburgskogo otdeleniya matematicheskogo instituta im. VA Steklova RAN. 2003. Vol. 300. ¹. 8. P. 65-71. (In Russian).
12. Kislinskii V.S., Grakhova E.P., Abdrakhmanova G.I. Primenenie veivletov i funktsii Ehrmita dlya modelirovaniya SSHP impul'sov pod trebovaniya maski GKRCH [The use of wavelets and Hermite functions for modeling UWB pulses according to the requirements of the GCR mask]. Infokommunikatsionnye tekhnologii. 2015. Vol. 13. ¹ 4. P. 391-398. https://doi.org/10.18469/ikt.2015.13.4.05 (In Russian).
13. Sinitsyn I.N. Metody momentov v zadachakh analiticheskogo modelirovaniya raspredelenii v nelineinykh stokhasticheskikh sistemakh na mnogoobraziyakh [Methods of moments in problems of analytical modeling of distributions in nonlinear stochastic systems on manifolds]. Sistemy i sredstva informatiki. 2015. Vol. 25. ¹ 3. P. 24-43. https://doi.org/10.14357/08696527150302 (In Russian).
14. Beitmen G., Ehrdeii A. Vysshie transtsendentnye funktsii [Higher transcendental functions]. Vtoroe izdanie. M.: Nauka, 1974. 296 p. (In Russian).
15. Grishentsev A.Yu. Avtokorrelyatsionnye i fraktal'nye svoistva matrits lineinogo unitarnogo preobrazovaniya Fur'e [Autocorrelation and fractal properties of linear unitary Fourier transform matrices]. Radiotekhnika. 2019. ¹ 1. P. 5-14. https://doi.org/10.18127/j00338486-201901-01 (In Russian).
16. Pis'mennyi D.T. Konspekt lektsii po vysshei matematike: polnyi kurs, 9-e izd [Lecture notes on higher mathematics: the full course, 4th ed.]. M.: Airis-press. 2010. 608 p. (In Russian).
17. Ziborov S. R. Sintez lineinykh radiotekhnicheskikh tsepei [Synthesis of linear radio circuits]. Sevastopol': Izd-vo SevNTU, 2013. 92 p. (In Russian).
18. Demirchyan K. S., Neiman L. R., Korovkin N. V., Chechurin V. L. Teoreticheskie osnovy ehlektrotekhniki, 4-e izd [Theoretical Foundations of Electrical Engineering, 4th ed.]. Vol. 1. SPb: Piter, 2006. 463 p. (In Russian).
For citation:
Grishentsev A.Yu., Korovkin N.V., Korobeynikov A.G. Investigation of the properties of the Fourier transform of Hermite-Gauss wavelets and application of the results obtained in radio electronics problems // Journal of Radio Electronics. – 2025. – ¹. 6. https://doi.org/10.30898/1684-1719.2025.6.11 (In Russian)