Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹3
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.3.15
FOR DETERMINING THE TIME DELAY
OF A RADIO SIGNAL RELAYED
BY THE MAIN AND ADJACENT SPACE VEHICLES
V.V. Sevidov
Military Orders of Zhukov and Lenin Red Banner Academy of Communications
named after Marshal of the Soviet Union S.M. Budyonny
194064, St. Petersburg, Tikhoretsky pr. 3
The paper was received December 20, 2024.
Abstract. Currently, methods of coordinate measurement of earth stations operating via spacecraft are being intensively developed. The specified methods are based on the reception and processing of radio signals of earth stations after their retransmission by spacecraft. In this case, in the ground-based coordinate measurement complex, time delays of the same realizations of radio signals caused by different trajectories are estimated. The accuracy of determining the coordinates of earth stations largely depends on the accuracy of estimating these time delays. Theorems and their consequences are formulated and proven, which together ensure an increase in the accuracy of estimating the time delays of a radio signal retransmitted by the main and adjacent spacecraft. As an illustration of the developed model, a difference-range method for estimating the coordinates of earth stations based on four small spacecraft is presented. The scientific novelty of the developed technical solution lies in expanding the theory of spline-algebraic harmonic analysis and extending it to the spaces of derivatives of radio signals, derivatives of correlation functions of radio signals. Moreover, special cases of the extended theory of spline-algebraic harmonic analysis coincide with the results obtained earlier.
Key words: spacecraft, earth station, bases of spline character functions, spline algebraic harmonic analysis, interpolation, difference-range method,
Corresponding author: Sevidov Vladimir Vitalievich, v-v-sevido@mail.ru
References
1. Volkov R.V., Sevidov V.V., Chemarov A.O. Tochnost' geolokatsii raznostno-dal'nomernym metodom s ispol'zovaniem sputnikov-retranslyatorov na geostatsionarnoi orbite //Izvestiya SPBGEHTU LEHTI. – 2014. – ¹. 9. – S. 12.
2. Fokin G., Sevidov V. Model for 5G UDN Positioning System Topology Search Using Dilution of Precision Criterion //2021 International Conference on Electrical Engineering and Photonics (EExPolytech). – IEEE, 2021. – Ñ. 32-36.
3. Fokin G., Sevidov V. Topology Search Using Dilution of Precision Criterion for Enhanced 5G Positioning Service Area //2021 13th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). – IEEE, 2021. – Ñ. 131-136.
4. Volkov R.V., Sayapin V.N., Sevidov V.V. Model' izmereniya vremennoi zaderzhki i chastotnogo sdviga radiosignala, prinyatogo ot sputnika-retranslyatora pri opredelenii mestopolozheniya zemnoi stantsii //T-Comm-Telekommunikatsii i Transport. – 2016. – T. 10. – ¹. 9. – S. 14-18.
5. Alberg D. i dr. Teoriya splainov i ee prilozheniya: Per. s angl. – Mir, 1972.
6. Schoenberg I.J. On spline functions. Inequalities. – N.Y.: Acad. Press, 1967.
7. Schoenberg I.J. Contributions to the problem of approximation of equidistant data by analytic functions. Part B. On the problem of osculatory interpolation. A second class of analytic approximation formulae //Quarterly of Applied Mathematics. – 1946. – Ò. 4. – ¹. 2. – Ñ. 112-141.
8. Schoenberg I.J. Cardinal interpolation and spline functions //Journal of Approximation theory. – 1969. – Ò. 2. – ¹. 2. – Ñ. 167-206.
9. Stechkin S.B., Subbotin YU.N. Splainy v vychislitel'noi matematike. – 1976.
10. Zheludev V.A. Vosstanovlenie funktsii i ikh proizvodnykh po setochnym dannym s pogreshnost'yu pri pomoshchi lokal'nykh splainov //Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki. – 1987. – T. 27. – ¹. 1. – S. 22-34.
11. Zheludev V.A. Lokal'naya splain-approksimatsiya na ravnomernoi setke //Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki. – 1987. – T. 27. – ¹. 9. – S. 1296-1310.
12. Kamada M., Toraichi K., Mori R. Periodic spline orthonormal bases //Journal of Approximation theory. – 1988. – Ò. 55. – ¹. 1. – Ñ. 27-34.
13. Zheludev V.A. Lokal'nye sglazhivayushchie splainy s reguliruyushchim parametrom //Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki. – 1991. – T. 31. – ¹. 2. – S. 193-211.
14. Zheludev V.A. Predstavlenie ostatochnogo chlena approksimatsii i tochnye otsenki dlya nekotorykh lokal'nykh splainov //Matematicheskie zametki. – 1990. – T. 48. – ¹. 3. – S. 54-65.
15. Zheludev V.A. Operatsionnoe ischislenie, svyazannoe s periodicheskimi splainami //Doklady Akademii nauk. – Rossiiskaya akademiya nauk, 1990. – T. 313. – ¹. 6. – S. 1309-1315.
16. Zheludev V.A. Periodic splines and wavelets //Contemporary Mathematics. – 1995. – Ò. 190. – Ñ. 339-339.
17. Zheludev V.A. Periodicheskie splainy i bystroe preobrazovanie Fur'e //Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki. – 1992. – T. 32. – ¹. 2. – S. 179-198.
18. Wahba G. Practical approximate solutions to linear operator equations when the data are noisy //SIAM journal on numerical analysis. – 1977. – Ò. 14. – ¹. 4. – Ñ. 651-667.
19. Wahba G. Smoothing noisy data with spline functions //Numerische mathematik. – 1975. – Ò. 24. – ¹. 5. – Ñ. 383-393.
20. P.Graven, G.Wahba. Smoothing noisy data with spline functions estimations the corrections degree of smooth by Cross Validation. // Numerische mathimatik. 1979. V.31 – ðð. 377-403.
21. Agievich S.N., Alekseev A.A., Glushankov E.I. Modeli signalov v bazisakh splainov defekta 1 i otsenivanie parametrov radioizluchenii //V³st³ vishchikh uchbovikh zaklad³v. Rad³oelektron³ka. – 1995. – T. 38. – ¹. 4. – S. 3-16.
22. Zav'yalov YU.S., Kvasov B.I. Miroshnichenko B. JT. Metody splain-funktsii. M //Moskva. – 1980.
23. Agievich S.N. Teoreticheskie osnovy splain-algebraicheskogo garmonicheskogo analiza signalov sistem radiosvyazi //Informatsionnye tekhnologii. – 2012. – ¹. 8. – S. 58-63.
24. Agievich S.N., Dvornikov S. V, Tikhonov S.S. Formirovanie i obrabotka radiosignalov v bazisakh funktsii splain-kharakterov.: Monogr. – SPb.: VAS, 2015. – 224 s.
25. Varichenko L.V., Labunets V.G., Rakov M.A. Abstraktnye algebraicheskie sistemy i tsifrovaya obrabotka signalov. – Nauk. dumka, 1986.
26. Trakhtman A.M. Vvedenie v obobshchennuyu spektral'nuyu teoriyu signalov. – 1972.
27. Trakhtman A.M., Trakhtman V.A. Osnovy teorii diskretnykh signalov na konechnykh intervalakh. – Ripol Klassik, 1975.
For citation:
Sevidov V.V. Mathematical model for determining the time delay of a radio signal relayed by the main and adjacent space vehicles // Journal of Radio Electronics. – 2025. – ¹. 3. https://doi.org/10.30898/1684-1719.2025.3.15 (In Russian)