Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹5
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.5.15
ON THE RELATIONSHIP BETWEEN SUBLUMINAL
AND SUPERLUMINAL GROUP VELOCITY DURING PROPAGATION
OF AN ELECTROMAGNETIC PULSE IN A DISPERSING MEDIUM
N.S. Bukhman
Samara State Technical University,
443100, Russia,Samara, Molodogvardeyskaya str., 244
The paper was received February 19, 2025.
Abstract. It is shown that there are no dispersing media with «subluminal only» or «superluminal only» real group velocity – if in some medium at some frequencies the real group velocity is subluminal, then in the same medium there are necessarily frequencies at which the real group velocity is superluminal. Conversely, if a medium has frequencies with a superluminal group velocity, then it necessarily has frequencies with a subluminal group velocity. In other words, there is a necessary connection between subluminal and superluminal group velocity – if any medium is capable of generating subluminal group velocity, then the same medium is capable of generating superluminal group velocity. Similarly, there are no media with «only positive» or «only negative» imaginary part of the complex group velocity – if at some frequencies the imaginary part of the group velocity is positive, then at other frequencies in the same medium it is negative and vice versa. This means that if there is a carrier frequency in the medium at which some linearly frequency-modulated signal propagates at a speed lower than the group speed, then in the same medium there is necessarily a carrier frequency at which the same signal will propagate at a speed higher than the group speed and vice versa.
Key words: group velocity, superluminal group velocity, subluminal group velocity, complex group velocity, dispersing medium.
Corresponding author: Bukhman Nikolay Sergeevich, nik3142@yandex.ru
References
1. Vinogradova M. B., Rudenko O. V., Suhorukov A. P. Teoriya voln. – 1979.
2. Vaĭnshteĭn L. A. Propagation of pulses //Soviet Physics Uspekhi. – 1976. – Ò. 19. – ¹. 2. – Ñ. 189. https://doi.org/10.1070/PU1976v019n02ABEH005138
3. Landau L. D., Lífshíts E. M. Electrodynamics of continuous media. – Oxford : Pergamon Press, 1946. – Ñ. 1963.
4. Bukhman N. S. On the principle of causality and superluminal signal propagation velocities //Journal of Communications Technology and Electronics. – 2021. – Ò. 66. – Ñ. 227-241. https://doi.org/10.1134/S1064226921030049
5. Bukhman N.S. On the Velocity of Propagation of a Frequency-Modulated Wave Packet in a Dispersive Absorbing Medium // Optics and Spectroscopy. – 2004. –Ò. 97. –¹ 1. –Ñ. 114-121.
6. Wang L. J., Kuzmich A., Dogariu A. Gain-assisted superluminal light propagation //Nature. – 2000. – Ò. 406. – ¹. 6793. – Ñ. 277-279. https://doi.org/10.1038/35018520
7. Talukder M. A. I., Amagishi Y., Tomita M. Superluminal to subluminal transition in the pulse propagation in a resonantly absorbing medium //Physical Review Letters. – 2001. – Ò. 86. – ¹. 16. – Ñ. 3546. https://doi.org/10.1103/PhysRevLett.86.3546
8. Dogariu A., Kuzmich A., Wang L. J. Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity //Physical Review A. – 2001. – Ò. 63. – ¹. 5. – Ñ. 053806. https://doi.org/10.1103/PhysRevA.63.053806
9. Akulshin A. M., Cimmino A., Opat G. I. Negative group velocity of a light pulse in cesium vapour //Quantum Electronics. – 2002. – Ò. 32. – ¹. 7. – Ñ. 567. https://doi.org/10.1070/QE2002v032n07ABEH002249
10. Macke B., Ségard B. Propagation of light-pulses at a negative group-velocity //The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics. – 2003. – Ò. 23. – Ñ. 125-141. https://doi.org/10.1140/epjd/e2003-00022-0
11. Akulshin A. M. et al. Pulses of» fast light,» the signal velocity, and giant Kerr nonlinearity //LASER PHYSICS-LAWRENCE-. – 2005. – Ò. 15. – ¹. 9. – Ñ. 1252.
12. Zolotovskiĭ I. O., Sementsov D. I. Velocity of the Maximum of the Envelope of a Frequency-Modulated Gaussian Pulse in an Amplifying Nonlinear Medium // Optics and Spectroscopy . – 2005. – V. 99. – No 1. – P. 81. https://doi.org/10.1134/1.1999897
13. Zolotovskiĭ I. O., Sementsov D. I. Velocity of the pulse envelope in tunnel-coupled optical waveguides with strongly differing parameters //Optics and spectroscopy. – 2006. – Ò. 101. – Ñ. 114-117. https://doi.org/10.1134/S0030400X06070204
14. Macke B., Ségard B. From fast to slow light in a resonantly driven absorbing medium //Physical Review A–Atomic, Molecular, and Optical Physics. – 2010. – Ò. 82. – ¹. 2. – Ñ. 023816. https://doi.org/10.1103/PhysRevA.82.023816
15. Akulshin A. M., McLean R. J. Fast light in atomic media //Journal of Optics. – 2010. – Ò. 12. – ¹. 10. – Ñ. 104001. https://doi.org/10.1088/2040-8978/12/10/104001
16. Malykin G. B., Romanets E. A. Superluminal motion //Optics and Spectroscopy. – 2012. – Ò. 112. – Ñ. 920-934. https://doi.org/10.1134/S0030400X12040145
17. Zolotovskii I. O., Minvaliev R. N., Sementsov D. I. Dynamics of frequency-modulated wave packets in optical guides with complex-valued material parameters //Physics-Uspekhi. – 2013. – Ò. 56. – ¹. 12. – Ñ. 1245.. https://doi.org/10.3367/UFNe.0183.201312e.1353
18. Macke B., Ségard B. Simultaneous slow and fast light involving the Faraday effect //Physical Review A. – 2016. – Ò. 94. – ¹. 4. – Ñ. 043801. https://doi.org/10.1103/PhysRevA.94.043801
19. Boyd and R. W., Gauthier D. J. « Slow''and» fasf'light // Progress in Optics. – 2002. – V. 43. – P. 497.
20. Ravelo B. Investigation on microwave negative group delay circuit //Electromagnetics. – 2011. – Ò. 31. – ¹. 8. – Ñ. 537-549. https://doi.org/10.1080/02726343.2011.621106
21. Tanaka H. et al. Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapor //Physical Review A. – 2003. – Ò. 68. – ¹. 5. – Ñ. 053801. https://doi.org/10.1103/PhysRevA.68.053801
22. Macke B., Ségard B. On-resonance material fast light //Physical Review A. – 2018. – Ò. 97. – ¹. 6. – Ñ. 063830. https://doi.org/10.1103/PhysRevA.80.011803
23. Nimtz G. Tunneling Confronts Special Relativity // Found. Phys., – 2011. – Vol. 41 – ¹ 7. – Ñ. 1193–1199,
24. Papoular . D. J., Clade P., Polyakov S. V., McCormick C. F., Migdall A. L., Lett P. D. Measuring optical tunneling times using a Hong–Ou–Mandel interferometer // Optics Express – 2008. – Vol. 16 – ¹ 20. – P. 16005–16012.
25. Borjemscaia N., Polyakov S. V., Lett P. D., Migdall A. Single-photon propagation through dielectric bandgaps // Optics Express – 2009. – Vol. 18 – ¹ 3. – P. 2279–2286.
26. Brunner N., Scarani V., Wegmuller M., Legrre M., Gisin N. Direct measurement of superluminal group velocity and signal velocity in an optical fiber // Phys. Rev. Lett. – 2004. – Vol. 93 – ¹ 20, Ñ. 203902.
27. Chiao R. Y., Boyce J., Mitchell M. W. // Superluminality and parelectricity: The ammonia maser revisited // Appl. Phys. B – 1995. – Vol. 60 – ¹ 2–3. – P. 259–265.
For citation:
Bukhman N.S. On the relationship between subluminal and superluminal group velocity during propagation of an electromagnetic pulse in a dispersing medium. // Journal of Radio Electronic. – 2025. – ¹. 5. https://doi.org/10.30898/1684-1719.2025.5.15