"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 11, 2016

contents             full textpdf   

An approach to increase the density of elements of single-phase multi-level inverter

E. L. Pankratov, E. A. Bulaeva
Nizhny Novgorod State University

The paper is received on November 3, 2016

Abstract. In this paper we analyzed manufacturing of single-phase multi-level inverter based on bipolar heterotransistors. On the basis of the analysis we formulate recommendations to decrease dimensions of elements of the inverter. At the same time in the framework of the approach one can obtain increasing of density of the above elements. In the framework of the considered approach it is necessary to manufacture a heterostructure with required configuration (manufacturing of required quantity of layers of the heterostructure, manufacturing of several sections framework required layers of heterostructure). After manufacturing of the heterostructure we consider doping of the above sections by diffusion or by ion implantation. The doping should be finished by optimized annealing of dopant and/or radiation defects. The optimization of annealing gives a possibility to obtain balance between decreasing of dimensions of elements of the inverter with increasing of density of the above elements and increasing and improvement of another characteristics of the considered elements (decreasing of heating during functioning and increasing of switching time of p-n-junctions as single elements and framework transistors). We also introduce an analytical approach to analyze mass and heat transport during technological process and functioning of these devices. The approach gives a possibility to take into account at one time: variation in space and time physical parameters (diffusion and heat diffusion coefficient, charge carriers mobility et al), nonlinearity of the considered processes.

Keywords: inverter; bipolar heterotransistor; optimization of technological process; analytical approach for prognosis of processes.


[1] Z. Ramezani, A.A. Orouji. // Mat. Sci. Sem. Proc. Vol. 19. P. 124-129 (2014).

[2] Ch. Dong, J. Shi, J. Wu, Y. Chen, D. Zhou, Z. Hu, H. Xie, R. Zhan, Zh. Zou. // Mat. Sci. Sem. Proc. Vol. 20. P. 7-11 (2014).

[3] D. Fathi, B. Forouzandeh. // Nano. Vol. 4 (3). P. 171-176 (2009).

[4] D. Fathi, B. Forouzandeh, N. Masoumi. // Nano. Vol. 4 (4). P. 233-238 (2009).

[5] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Litvin, V.V. Milenin, A.V. Sachenko.// Semiconductors. Vol. 43 (7). P. 897-903 (2009).

[6] A.G. Alexenko, I.I. Shagurin. Mikroskhemy.  [Microcircuitry]. Moscow, Radio and communication Publ., 1990 (In Russian).

[7] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Osnovy mikroelektroniki. [Basis of microelectronics]. Moscow, Radio and communication Publ., 1991 (In Russian).

[8] V.I. Lachin, N.S. Savelov. Elektronika. [Electronics]. Rostov-na-Donu, Phoenix Publ., 2001. (In Russian).

[9] B. Mitrovic, A. Gurary, and L. Kadinski.// J. Cryst. Growth. Vol. 287, 656 (2006).

[10] R. Zuo, H. Zhanga, X. Liu, // J. Cryst. Growth. Vol. 293, 498 (2006).

[11] M. G. Mynbaeva, E. N. Mokhov, A. A. Lavrent’ev, K. D. Mynbaev. // Techn. Phys. Lett. Vol. 34 (17), 13 (2008).

[12] S.N. Heo, Y. Ishiguro, R. Hayakawa, T. Chikyow, Y. Wakayama. // Applied Physics Letters Materials. Vol. 4 (3). P. 030901-1--030901-7 (2016).

[13] Z.Yu. Gotra. Tekhnologiya mikroelrktronnykh priborov. [Technology of microelectronic device]. Moscow, Radio and communication Publ., 1991 (In Russian).

[14] V.L. Vinetskiy, G.A. Kholodar', Radiatsionnaya fizika poluprovodnikov. [Radiative physics of semiconductors]. Kiev, Naukova Dumka Publ., 1979,(In Russian).

[15] P.M. Fahey, P.B. Griffin, J.D. Plummer. // Rev. Mod. Phys. 1989. Vol. 61. ¹ 2. P. 289-388.

[16] M.L. Krasnov, A.I. Kiselev, G.I. Makarenko. Integral'nye uravneniya. [Integral equations]. Moscow, Nauka Publ., 1976 (In Russian).

[17] E.L. Pankratov. // Russian Microelectronics. 2007. V.36 (1). P. 33-39.

[18] E.L. Pankratov. // Int. J. Nanoscience. Vol. 7 (4-5). P. 187–197 (2008).

[19] E.L. Pankratov.//  J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010).

[20] E.L. Pankratov, E.A. Bulaeva. // J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013).

[21] E.L. Pankratov, E.A. Bulaeva. // Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014).

[22] E.L. Pankratov, E.A. Bulaeva. // Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1250035 (2012).

[23] E.L. Pankratov, E.A. Bulaeva. // J. Comp. Theor. Nanoscience. Vol. 11 (1). P. 91-101 (2014).