Abstract. In this paper we analyzed
manufacturing of single-phase multi-level inverter based on bipolar
heterotransistors. On the basis of the analysis we formulate recommendations to
decrease dimensions of elements of the inverter. At the same time in the framework
of the approach one can obtain increasing of density of the above elements. In
the framework of the considered approach it is necessary to manufacture a
heterostructure with required configuration (manufacturing of required quantity
of layers of the heterostructure, manufacturing of several sections framework
required layers of heterostructure). After manufacturing of the heterostructure
we consider doping of the above sections by diffusion or by ion implantation.
The doping should be finished by optimized annealing of dopant and/or radiation
defects. The optimization of annealing gives a possibility to obtain balance
between decreasing of dimensions of elements of the inverter with increasing of
density of the above elements and increasing and improvement of another
characteristics of the considered elements (decreasing of heating during
functioning and increasing of switching time of p-n-junctions as
single elements and framework transistors). We also introduce an analytical approach
to analyze mass and heat transport during technological process and functioning
of these devices. The approach gives a possibility to take into account at one
time: variation in space and time physical parameters (diffusion and heat
diffusion coefficient, charge carriers mobility et al), nonlinearity of the
considered processes.
Keywords: inverter; bipolar heterotransistor;
optimization of technological process; analytical approach for prognosis of processes.
[1] Z. Ramezani, A.A. Orouji.
// Mat. Sci. Sem. Proc. Vol.
19. P. 124-129 (2014).
[2] Ch. Dong, J. Shi, J. Wu, Y. Chen, D. Zhou, Z. Hu, H. Xie,
R. Zhan, Zh. Zou. // Mat. Sci. Sem. Proc. Vol. 20. P. 7-11 (2014).
[3]
D. Fathi, B. Forouzandeh. // Nano. Vol. 4 (3). P. 171-176 (2009).
[4]
D. Fathi, B. Forouzandeh, N. Masoumi. // Nano. Vol. 4 (4). P. 233-238
(2009).
[5] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Litvin, V.V.
Milenin, A.V. Sachenko.// Semiconductors. Vol. 43 (7). P. 897-903 (2009).
[6] A.G. Alexenko,
I.I. Shagurin. Mikroskhemy. [Microcircuitry]. Moscow, Radio and communication
Publ., 1990 (In Russian).
[7] N.A. Avaev,
Yu.E. Naumov, V.T. Frolkin. Osnovy mikroelektroniki. [Basis of microelectronics].
Moscow, Radio and communication
Publ., 1991 (In Russian).
[8] V.I. Lachin, N.S. Savelov.
Elektronika. [Electronics]. Rostov-na-Donu, Phoenix
Publ., 2001.
(In Russian).
[9]
B. Mitrovic, A. Gurary, and L. Kadinski.// J. Cryst. Growth. Vol. 287, 656
(2006).
[10]
R. Zuo, H. Zhanga, X. Liu, // J. Cryst. Growth. Vol. 293, 498 (2006).
[11]
M. G. Mynbaeva, E. N. Mokhov, A. A. Lavrent’ev, K. D. Mynbaev. // Techn. Phys.
Lett. Vol. 34 (17), 13 (2008).
[12]
S.N. Heo, Y. Ishiguro, R. Hayakawa, T. Chikyow, Y. Wakayama. // Applied Physics
Letters Materials. Vol. 4 (3). P. 030901-1--030901-7 (2016).
[13]
Z.Yu. Gotra. Tekhnologiya mikroelrktronnykh priborov. [Technology
of microelectronic device].
Moscow, Radio and communication
Publ., 1991 (In Russian).
[14]
V.L. Vinetskiy, G.A. Kholodar', Radiatsionnaya fizika poluprovodnikov. [Radiative physics of semiconductors].
Kiev, Naukova Dumka Publ., 1979,(In Russian).
[15]
P.M. Fahey, P.B. Griffin, J.D. Plummer. // Rev. Mod. Phys. 1989. Vol. 61.
¹ 2. P. 289-388.
[16]
M.L.
Krasnov, A.I. Kiselev, G.I. Makarenko. Integral'nye uravneniya. [Integral equations]. Moscow, Nauka Publ., 1976 (In
Russian).
[17]
E.L. Pankratov. // Russian Microelectronics. 2007. V.36 (1). P. 33-39.
[18]
E.L. Pankratov. // Int. J. Nanoscience. Vol. 7 (4-5). P. 187–197 (2008).
[19]
E.L.
Pankratov.// J. Comp. Theor.
Nanoscience.
Vol. 7 (1). P. 289-295 (2010).
[20]
E.L. Pankratov, E.A. Bulaeva. //
J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013).
[21]
E.L. Pankratov, E.A. Bulaeva. // Int. J. Micro-Nano Scale Transp.
Vol. 4 (1). P. 17-31 (2014).
[22]
E.L. Pankratov, E.A. Bulaeva. // Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1250035 (2012).
[23]
E.L. Pankratov, E.A. Bulaeva. // J. Comp. Theor. Nanoscience. Vol. 11 (1). P. 91-101
(2014).