"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 11, 2017

contents             full textpdf   

The Maxwell‑Wagner relaxation of electric fields in the piezo-electro-luminescent fiber-optical sensor of vibration pressure

A. A. Pan'kov
State National Research Polytechnical University of Perm, Komsomolskiy pr. 29, Perm
614990, Russia

 The paper is received on October 17, 2017


Abstract. The algorithm of finding of function of distribution of amplitude of the vibration pressure longwise three-phase fiber optic sensor by results of the intensity of light proceeding from a fiber optic phase measured on the edge section of the sensor is developed for a case of nonlinear "function of a luminescence", which is the dependence of intensity of light on voltage operating on a luminescent element. The problem is reduced to the solution of the Fredholm integral equation of the 1st kind with the differential kernel depending on the calculated effective parameters of the sensor and on the derivative set function of a luminescent element. The analysis of influence of Maxwell‑Wagner relaxation of electric fields in the structure elements of the fiber-optical sensor and the influence of frequency of the diagnosed vibration pressure upon the operating and informative coefficients of the sensor are carried out.

Key words: piezo-electro-elasticity, mechanical-luminescent effect, optical fiber, sensor of pressure, Maxwell‑Wagner relaxation.


1.     Pan'kov A.A. Patent of Russian Federation No. 2630537. Volokonno-opticheskiy datchik davleniya [Fiber-optical pressure sensor]. Published 11.09.2017.  Patent application No. 2016136058,  06.09.2016 (In Russian)

2.     Pankov A.A. Piezoelectroluminescent optical fiber sensor for diagnostics of the stress state and defectoscopy of composites.  Mechanics of Composite Materials. 2017.  Vol. 53, No. 2. pp. 229-242.

3.     G. K. Vandyshev and Yu. A. Zyuryukin. Characteristics of a Piezoelectric Pressure Transducer Operating into a Resistive Load. Journal of Communications Technology and Electronics. 2001. Vol.46, No.3. pp.346-351

4.    V. M. Petrov, M. I. Bichurin, and G. Srinivasan. Maxwell-Wagner relaxation in magnetoelectric composites.  Technical Physics Letters. April 2004.Vol. 30, Issue 4. pp. 341-344,  https://doi.org/10.1134/1.1748619

5.     A. V. Turik, A. I. Chernobabov, and M. Yu. Rodinin. Heterogeneous Multiferroics: Magnetoelectricity and Piezoelectric Effect. Physics of the Solid State. 2009. Vol. 51, No. 8. pp. 1675-1679. DOI: 10.1134/S1063783409080253

6.     G. S. Radchenko and A. V. Turik. Giant Piezoelectric Effect in Layered FerroelectricPolymer Composites. Physics of the Solid State. 2003. Vol. 45, No. 9. pp. 1759-1763

7.      A.A.Pankov. Maxwell-wagner relaxation in the electromagnetic PVF/ferrite with ellipsoidal inclusions in variation electric field. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2013. No. 6. Available at  http://jre.cplire.ru/jre/jun13/12/text.pdf (In Russian)

8.     A.A.Pankov. Dielectric relaxation in the fibrous composite polyethylene/ferrite. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2014.  No. 2. Available at http://jre.cplire.ru/jre/feb14/1/text.pdf (In Russian)

9.   Mikhlin S.G., Smolitskiy Kh.L. Priblizhennye metody resheniya differentsial'nykh i integral'nykh uravneniy. [Approximate method of solutions of differential and integral eaquations]. Moscow, Nauka Fizmatlit Publ., 1965, 384 .(In Russian)

10. A.B.Vasilyeva, A.N.Tikhonov. Integral'nye uravneniya [Integral Equations]. Moscow, Fizmatlit Publ., 2002, 360 p. (In Russian)   
11.  A.D.Polyanin, A.V.Manzhirov. Spravochnik po integral'nym uravneniyam [Integlal Equation. Reference Book]
Moscow, Fizmatlit Publ., 2003, 608 p. (In Russian)  

12.   A.F.Latypov. Numerical methods of solutions of Fredolm and Volterra integral equations  of the 1st kind. International conference "Reverse and ill-posed problems of mathematical physics, devoted to 75-th anniversary of academitian M. M Lavrentyev. August 20-25, 2007, Novosibirsk, Russia (In Russian)
13.   A.I.Gusev, M.K.Samokhvalov. Elektricheskie kharakteristiki elektroluminescentnykh indikatorov [Elctrical kharacteristics of electroluminescent indicators] . Ulyanovsl, Ulyanovsk State Univesity Publ., 2006, 125 p. (In Russian)    
14. L.P.Khoroshun, B.P.Maslov, P.V.Leschenko/ Prognozirovanie effektivnykh svoistv pyezoaktivnykh kompozitnykh materialov Effective [Prediction of effective properties of piezo-active composite materials]. Kiev, Naukova Dumka Publ., 1989, 208 p.  (In Russian)
15.   Sessler G.M. Piezoelectricity in polyvinylidenefluoride.  J. Acoust. Soc. Amer.  1981.  Vol. 70, No. 6. pp.1596‑1608


For citation:

A. A. Pan'kov. The Maxwell‑Wagner relaxation of electric fields in the piezo-electro-luminescent fiber-optical sensor of vibration pressure. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 11. Available at http://jre.cplire.ru/jre/nov17/6/text.pdf. (In Russian)