"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 10, 2016

contents             full texthtml,   pdf   

Improved algorithm of frequency estimation based on the iterative calculation of the autocorrelation sequence

V. G. Volkov1 , U. N. Krivov 1, I. V. Lukyanov 2

1 OOO "NPP "LAMA", Rybinsk

2Federal State-Financed Educational Institution of High Professional Education "P.A.Solovyov Rybinsk State Aviation Technical University"

The paper is received on October 3, 2016

Abstract. One of the important problems in radio signals processing is the carrier frequency estimation. A review of known statistically efficient methods of frequency estimation is presented. These methods are not computationally efficient for critical to real-time tasks. For this reason, in practice, different methods of complexing are used. This provides acceptable results in practical applications. One of such methods is combining of the iterative procedure of autocorrelation sequence calculation (which provides an increase in the signal to noise ratio) and AR-frequency estimation.

This article presents an improved frequency estimation algorithm based on the iterative calculation of the autocorrelation sequence. The proposed algorithm requires nearly half operations of addition and multiplication. This is achieved by eliminating the inverse fast Fourier transform and the solution of the Yule-Walker equation. First term of autocorrelation sequence is used for frequency estimation. Goertzel algorithm is used for term calculation. A correct length selection rule for zero blocks which fill original signal, has been formulated.

The results of the simulation algorithm are provided. A comparison of the  mean square error with the Cramer-Rao bounds is provided. It is shown that analyzed algorithm provides a statistically efficient frequency estimation for a signal/noise ratio from –3 to 50 dB. This result is achieved by using three iterations and 64 samples number. Obtained empirical curves can be used for optimal selection of  parameters of discussed method for practical applications.

Keywords: frequency estimation, efficient estimator, autocorrelation sequence.

References

1. Marpl S. L. Cifrovoy spektralniy analiz i ego prilojeniya  [Digital spectral analysis: with applications]. Moscow, Mir Publ. 1990. 604 p. (In Russian)

2. Shahtarin B. I., Kovrigin V. A. Metodi spectralnogo ocenivaniya sluchaynih processov. [Methods of Random Processes Spectral Estimation]. Moscow, Goryachaya Liniya – Telecom  Publ. 2011. 256 p. (In Russian)

3. Dmitriev E. V. Approximation of short processes, signals, functions and calculation of their harmonic discrete spectrum. Fizika Volnovih Processov i Radiotechnicheskiye Sistemi Physics of Wave Processes and Radio Systems, 2007. Vol.10, ¹ 1, pp. 33-46.

4 Rife . D. C., Boorstyn R. R.  Single-tone parameter estimation from discrete-time observations.  IEEE Trans. Inform. Theory, 1974, vol. IT–20, pp. 591–598, Sept.

5. Clarkson V. Efficient single frequency estimators.  In Proc. Internat. Sympos. Signal Process., August 1992 Appl., pages 327-330.

6. Kay S. A Fast and Accurate Single Frequency Estimator. IEEE Trans. Acoustics Speech Signal Processing, Dec. 1989, vol. 37, no. 12, pp. 1987–1990.

7. Lank G. W., Reed I. S., and Pollon G. E., A semicoherent detection and  doppler estimation statistic. IEEE Transactions on Aerospace and Electronic Systems, Mar. 1973, vol. AES–9, pp. 151–165.

8. Ronkin M., Khrestina E.,  Kalmikov A. Frequency Estimation for Short Realization of Radar Signals: The New Algorithm Presentation. Contemporary Engineering Sciences, 2014, Vol. 7, ¹. 33, pp. 1777-1781. Available at:  http://www.m-hikari.com/ces/ces2014/ces33-36-2014/khrestinaCES33-36-2014-1.pdf

9. Nishiyama K. A Nonlinear Filter for Estimating a Sinusoidal Signal and Its Parameters in White Noise: On the Case of a Single Sinusoid. IEEE Transactions on Signal Processing, 1997, Vol. 45, NO. 4.

10. Butt N. R., Jakobsson A.,  Mossberg M. Computationally efficient online phase-based frequency estimation of a single tone.  17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

11. Hing Cheung So,  Hongqing Liu. Improved Single-Tone Frequency Estimation by Averaging and Weighted Linear Prediction, ETRI Journal, February 2011, vol. 33, ¹ 1,

12. Jacobsen E.,  Kootsookos P. Fast, Accurate Frequency Estimators. IEEE Signal Processing Magazine. June 2007, 24(3):123 – 125.

13. Kay S.M. Fundamentals of Statistical Signal Processing: Estimation Theory (v.1). Prentice Hall, Upper Sadle River, NJ, 1998. 595 p.

14. Lyons R.. Cifrovoya obrabotka signalov  [Digital signal processing]. Moscow, Binom Publ. 2006. 656 p. (In Russian)

15. Nikiforov A. A. Identifikaciya i Ocenka Informacionnih Parametrov Navigacionnih System s Kodovim Razdeleniyem. Dissertaciya na soiskaniye uchenoy stepeni kandidata technicheskih nauk [Identification and Estimation of Information Parameters of Navigation Systems with Code Division. Ph.D. Thesis].  Bauman Moscow State Technical University, 2014

16. Nikiforov A. A. Algorithm  for  Iterative  Calculations Autocorrelation Functions in the Problem of  Frequency  Estimation  in  System  with  Spread  Spectrum  Signals. Mechanizaciya Stroitelstva Mechanization of Construction, 2013., ¹ 11, pp. 53-55.

17. Ostanin S. A., The Increase in Signal / Noise Ratio by Successive Calculation of the Autocorrelation Function. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2011, No. 12. Available at http://jre.cplire.ru/win/dec11/13/text.html (In Russian)

18. Goertzel, G. An Algorithm for the Evaluation of Finite Trigonometric Series.  American Mathematical Monthly, 1985 ¹ 65 (1), pp. 34–35.