Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. №12
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2022.12.6

 

APPLICATION OF THE BASIS CORRECTION METHOD TO REMOVE UNCERTAINTY IN THE SYNTHESIS OF AN INVERSE FILTER

 

R.G. Hafizov, E.A. Grigorievykh, E.S. Pahmutova, M.S. Sokolova, A.M. Maslikov

 

Volga State University of Technology

424000, Russia, Yoshkar-Ola, Lenin sq., 3

 

The paper was received December 14, 2022

 

Abstract. The process of linear filtering is considered as a process of representing a signal in an oblique coordinate system. An approach to the elimination of uncertainty of the "divide by zero" type in the synthesis of an inverse filter, based on the basis correction, is proposed.

Key words: inverse filtering, oblique-angle basis, Gram matrix, signal compression, side-lobes

Corresponding author: Grigorevyh Elena Andreevna, GrigorevyhEA@volgatech.net

References

1.    Gonsales R., Vuds R. Cifrovaya obrabotka izobrazhenij [Digital image processing]. Moscow, Tekhnosfera. 2005. 1072 p. (In Russian)

2.    Lv XG., Li F., Zeng T. Convex blind image deconvolution with inverse filtering. Inverse Problems. 2018. V.34. №3. P.3-35. https://doi.org/10.1088/1361-6420/aaa4a7

3.    Michailovich O., Tannenbaum A. Blind Deconvolution of Medical Ultrasound Images: A Parametric Inverse Filtering Approach. IEEE Transactions on Image Processing. 2007.  V.16. №12. P.3005-3019. https://doi.org/10.1109/tip.2007.910179

4.    Schneider M., Habets E.A.P. Iterative DFT-Domain Inverse Filter Optimization Using a Weighted Least-Squares Criterion. IEEE/ACM Transactions on Audio, Speech, and Language Processing. 2019. V.27. №12. P.1957-1969. https://doi.org/10.1109/taslp.2019.2936385

5.    Mudukutore A.S., Chandrasekar V., Keeler R.J. Pulse compression for weather radars. IEEE Transactions on Geoscience and Remote Sensing. 1998. V.36. №1. P.125-142. https://doi.org/10.1109/taslp.2019.2936385

6.    Zhang Yo. et al. Super-resolution surface mapping for scanning radar: inverse filtering based on the fast iterative adaptive approach. IEEE transactions on geoscience and remote sensing. 2018. V.56. №1. P.127-144. https://doi.org/10.1109/TGRS.2017.2743263

7.    Nelander A. Processing for continuous radar waveformsюю 2004 International Waveform Diversity & Design Conference. Edinburgh. 2004. P.1-5. https://doi.org/10.1109/IWDDC.2004.8317557

8.    Abramenkov V.V., Vasil'chenko O.V., Semchenkov S.M., Pechenev E.A., Inverse filtering of impulse signals. Elektromagnitnye volny i elektronnye sistemy [Electromagnetic waves and electronic systems]. 2017. №4. P.42-53. (In Russian)

9.    Semchenkov S.M., Pechenev E.A. A method for increasing resolution by inverse filtering of pulse signals. Radiopromyshlennost' [Radio industry]. 2017. №3. P.103-109. (In Russian)

10. Abramenkov V.V., Mitrofanov D.G., ZHbanov I.L., Semchenkov S.M. Method for Improving the Stability of Estimates of the Impulse Response of a Linear System Based on the Singular Complement of the Reference Signal Matrix. Zhurnal radioelektroniki [Journal of radio electronics]. 2020. №9. https://doi.org/10.30898/1684-1719.2020.9.6. (In Russian)

11. Mungkala Ch., Kitkuan D. Digital Image Restoration: A Comparison Study between Inverse and Weiner Filtering Algorithms (IWFA). The Thai Journal of Mathematics. 2020. V.18. №1. P.14-37.

12. Khafizov R.G., Kazarinov A.V. Optimization of Correction of Critical Components of the Pulse Signal Spectrum to Ensure Stability of Inverse Filtering. Radiotekhnicheskie i telekommunikacionnye sistemy [Radio engineering and telecommunication systems]. 2020. №2(38). P.24-33. (In Russian)

13. Zadorozhnyj V.N., Zal'mezh V.F., Trifonov A.Yu., SHapovalov A.V. Vysshaya matematika dlya tekhnicheskih universitetov. CHast' II. Analiticheskaya geometriya: uchebnoe posobie [Higher mathematics for technical universities. Part II. Analytic Geometry: Tutorial]. Tomsk, Publishing House of Tomsk Polytechnic University. 2014. (In Russian)

14. Khafizov R.G. Ensuring a Resolved Image with Inverse Filtering of Signals under Uncertainty. Cifrovaya obrabotka signalov [Digital signal processing]. 2020. №1. P.50-54. (In Russian)

15. Khafizov R.G. Estimation of the parameters of the side lobes of the compressed signal at the output of the inverse filter under uncertainty. Zhurnal radioelektroniki [Journal of Radio Electronics]. 2021. №8. https://doi.org/10.30898/1684-1719.2021.8.10 (In Russian)

For citation:

Khafizov R.G., Grigorievykh E.A., Pahmutova E.S., Sokolova M.S., Maslikov A.M. Applicaton of the basis correction method to remove uncertainty in the synthesis of an inverse filter. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2022. №12. https://doi.org/10.30898/1684-1719.2022.12.6 (In Russian)